Nanotechnology for research and treatment of the intestine | Journal of Nanobiotechnology

0
230


  • Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun. 2021;12(1):903.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heppert JK, Davison JM, Kelly C, Mercado GP, Lickwar CR, Rawls JF. Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nat Rev Gastroenterol Hepatol. 2021;18(1):7–23.

    PubMed 
    Article 

    Google Scholar
     

  • Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, Sung JJY, Kaplan GG. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet (London, England). 2017;390(10114):2769–78.

    Article 

    Google Scholar
     

  • Kamm MA. Rapid changes in epidemiology of inflammatory bowel disease. Lancet (London, England). 2017;390(10114):2741–2.

    Article 

    Google Scholar
     

  • Beaugerie L, Rahier JF, Kirchgesner J. Predicting preventing, and managing treatment-related complications in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(6):1324-1335.e2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article 

    Google Scholar
     

  • Rutgeerts P, Vermeire S, Van Assche G. Mucosal healing in inflammatory bowel disease: impossible ideal or therapeutic target? Gut. 2007;56(4):453–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Colombel J-F, D’Haens G, Lee W-J, Petersson J, Panaccione R. Outcomes and strategies to support a treat-to-target approach in inflammatory bowel disease: a systematic review. Journal of Crohns & Colitis. 2020;14(2):254–66.

    Article 

    Google Scholar
     

  • Kotla NG, Rana S, Sivaraman G, Sunnapu O, Vemula PK, Pandit A, Rochev Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv Drug Deliv Rev. 2019;146:248–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Forgie AJ, Fouhse JM, Willing BP. Diet-microbe-host interactions that affect gut mucosal integrity and infection resistance. Front Immunol. 2019;10:1802.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dos Santos AM, Carvalho SG, Meneguin AB, Sábio RM, Gremião MPD, Chorilli M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: challenges, advances and future perspectives. J Control Release. 2021;334:353–66.

    PubMed 
    Article 

    Google Scholar
     

  • Danese S, Vuitton L, Peyrin-Biroulet L. Biologic agents for IBD: practical insights. Nat Rev Gastroenterol Hepatol. 2015;12(9):537–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm. 2019;558:367–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nunthanid J, Huanbutta K, Luangtana-Anan M, Sriamornsak P, Limmatvapirat S, Puttipipatkhachorn S. Development of time-, pH-, and enzyme-controlled colonic drug delivery using spray-dried chitosan acetate and hydroxypropyl methylcellulose. Eur J Pharm Biopharm. 2008;68(2):253–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matos AI, Carreira B, Peres C, Moura LIF, Conniot J, Fourniols T, Scomparin A, Martínez-Barriocanal Á, Arango D, Conde JP, Préat V, Satchi-Fainaro R, Florindo HF. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J Control Release. 2019;307:108–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa—targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev. 2021;175:113828.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46(1–3):27–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2:1821–71.

    Article 

    Google Scholar
     

  • Ravi Kiran A, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci. 2021;9(23):7667–704.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osman N, Devnarain N, Omolo CA, Fasiku V, Jaglal Y, Govender T. Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(1): e1758.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio. 2021;11: 100124.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu J, Ma L, Zhang G, Chen Y, Wang Z. Recent progress of surface modified nanomaterials for scavenging reactive oxygen species in organism. Bioconjug Chem. 2021;32(11):2269–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao X, He EJ, Lu XR, Wu LJ, Fan YY, Yu HQ. Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. Sci Total Environ. 2021;794: 148765.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4:33.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li M, Li Y, Li S, Jia L, Wang H, Li M, Deng J, Zhu A, Ma L, Li W, Yu P, Zhu T. The nano delivery systems and applications of mRNA. Eur J Med Chem. 2021;227: 113910.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ekambaram R, Dharmalingam S. Fabrication and evaluation of electrospun biomimetic sulphonated PEEK nanofibrous scaffold for human skin cell proliferation and wound regeneration potential. Mater Sci Eng, C. 2020;115: 111150.

    CAS 
    Article 

    Google Scholar
     

  • Marew T, Birhanu G. Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regenerative Ther. 2021;18:102–11.

    CAS 
    Article 

    Google Scholar
     

  • Park S, Gwon Y, Kim W, Kim J. Rebirth of the eggshell membrane as a bioactive nanoscaffold for tissue engineering. ACS Biomater Sci Eng. 2021;7(6):2219–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009;5(8):2884–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su LC, Xu H, Tran RT, Tsai YT, Tang L, Banerjee S, Yang J, Nguyen KT. In situ re-endothelialization via multifunctional nanoscaffolds. ACS Nano. 2014;8(10):10826–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Urnukhsaikhan E, Bold B-E, Gunbileg A, Sukhbaatar N, Mishig-Ochir T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep. 2021;11(1):21047–21047.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao F, Shao T, Yu Y, Xiong Y, Yang L. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat Commun. 2021;12(1):745.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang Y, Zhang L, Wen D, Ding Y. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Mater Sci Eng C-Mater Biol Appl. 2016;69:1361–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2(5):395–401.

    PubMed 
    Article 

    Google Scholar
     

  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang SC, Fu YY, Lo WF, Hua TE, Tuan HY. Vascular labeling of luminescent gold nanorods enables 3-D microscopy of mouse intestinal capillaries. ACS Nano. 2010;4(10):6278–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han J, Feng Y, Liu Z, Chen Q, Shen Y, Feng F, Liu L, Zhong M, Zhai Y, Bockstaller M, Zhao Z. Degradable GO-Nanocomposite hydrogels with synergistic photothermal and antibacterial response. Polymer. 2021;230:124018.

    CAS 
    Article 

    Google Scholar
     

  • Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun. 2019;10(1):3523.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim YK, Kim E-J, Lim JH, Cho HK, Hong WJ, Jeon HH, Chung BG. Dual stimuli-triggered nanogels in response to temperature and pH changes for controlled drug release. Nanoscale Res Lett. 2019;14:1–9.

    Article 

    Google Scholar
     

  • Wang S, Ha Y, Huang X, Chin B, Sim W, Chen R. A new strategy for intestinal drug delivery via ph-responsive and membrane-active nanogels. ACS Appl Mater Interfaces. 2018;10(43):36622–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng J, Wu Y, Zhang L, Li Y, Liu S, Wang H, Li C. Enhanced chemical stability, intestinal absorption, and intracellular antioxidant activity of cyanidin-3-o-glucoside by composite nanogel encapsulation. J Agric Food Chem. 2019;67(37):10432–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Balasubramaniam SL, Patel AS, Nayak B. Surface modification of cellulose nanofiber film with fatty acids for developing renewable hydrophobic food packaging. Food Packag Shelf Life. 2020;26:100587.

    Article 

    Google Scholar
     

  • Ojah N, Saikia D, Gogoi D, Baishya P, Ahmed GA, Ramteke A, Choudhury AJ. Surface modification of core-shell silk/PVA nanofibers by oxygen dielectric barrier discharge plasma: studies of physico-chemical properties and drug release behavior. Appl Surf Sci. 2019;475:219–29.

    CAS 
    Article 

    Google Scholar
     

  • Fang Y, Wang Q, Lin X, Jin X, Yang D, Gao S, Wang X, Yang M, Shi K. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: optimized preparation characterization, and in vivo evaluation. J Pharm Sci. 2019;108(9):2994–3002.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoon HS, Yang K, Kim YM, Nam K, Roh YH. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing. Carbohydr Polym. 2021;272:118469.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tharmavaram M, Pandey G, Bhatt P, Prajapati P, Rawtani D, Sooraj KP, Ranjan M. Chitosan functionalized Halloysite Nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment. Int J Biol Macromol. 2021;191:1046–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pandey G, Tharmavaram M, Phadke G, Rawtani D, Ranjan M, Sooraj KP. Silanized halloysite nanotubes as ‘nano-platform’ for the complexation and removal of Fe (II) and Fe (III) ions from aqueous environment. Sep Purif Technol. 2022;293: 121141.

    CAS 
    Article 

    Google Scholar
     

  • Rawtani D, Pandey G, Tharmavaram M, Pathak P, Akkireddy S, Agrawal YK. Development of a novel ‘nanocarrier’ system based on Halloysite Nanotubes to overcome the complexation of ciprofloxacin with iron: an in vitro approach. Appl Clay Sci. 2017;150:293–302.

    CAS 
    Article 

    Google Scholar
     

  • Homayun B, Choi H-J. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. Int J Pharm. 2020;579: 119152.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yendluri R, Lvov Y, de Villiers MM, Vinokurov V, Naumenko E, Tarasova E, Fakhrullin R. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J Pharm Sci. 2017;106(10):3131–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding X, Li D, Jiang J. Gold-based inorganic nanohybrids for nanomedicine applications. Theranostics. 2020;10(18):8061–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang H, Wang M, Xu X, Gao P, Xu Z, Zhang Q, Li H, Yan A, Kao RY-T, Sun H. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat Commun. 2021;12(1):3331–3331.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, Wang J, Shen Z, Wang X, Qian D, Huang A, Zhang B, Li JW. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci USA. 2012;109(13):4944–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McClements DJ, Xiao H, Demokritou P. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Coll Interface Sci. 2017;246:165–80.

    CAS 
    Article 

    Google Scholar
     

  • Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, Liang XJ, Zhang J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics. 2020;10(11):4944–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ding XG, Li D, Jiang J, Gold-based inorganic nanohybrids for nanomedicine applications. Theranostics. 2020;10(18):8061-8079.

  • Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors. 2021;11(2):55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang W, Chen R, Peng Y, Duan F, Huang Y, Guo W, Chen X, Nie L. In vivo quantitative photoacoustic diagnosis of gastric and intestinal dysfunctions with a broad pH-responsive sensor. ACS Nano. 2019;13(8):9561–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Broaders E, Gahan CG, Marchesi JR. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut microbes. 2013;4(4):271–80.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kelly SA, Rodgers AM, O’Brien SC, Donnelly RF, Gilmore BF. Gut check time: antibiotic delivery strategies to reduce antimicrobial resistance. Trends Biotechnol. 2020;38(4):447–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hassan KT, Ibraheem IJ, Hassan OM, Obaid AS, Ali HH, Salih TA, Kadhim MS. Facile green synthesis of Ag/AgCl nanoparticles derived from Chara algae extract and evaluating their antibacterial activity and synergistic effect with antibiotics. J Environ Chem Eng. 2021;9(4): 105359.

    CAS 
    Article 

    Google Scholar
     

  • Shanmugapriya K, Kang HW. Synthesis of nanohydroxyapatite/collagen-loaded fucoidan-based composite hydrogel for drug delivery to gastrointestinal cancer cells. Colloids Surfaces B-Biointerfaces. 2021;203:111769.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soto-Quintero A, Romo-Uribe A, Bermudez-Morales VH, Quijada-Garrido I, Guarrotxena N. 3D-hydrogel based polymeric nanoreactors for silver nano-antimicrobial composites generation. Nanomaterials. 2017;7(8):209.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liaw C-Y, Ji S, Guvendiren M. Engineering 3D hydrogels for personalized in vitro human tissue models. Adv Healthcare Mater. 2018;7(4):1701165.

    Article 

    Google Scholar
     

  • Lai W-F, Tang R, Wong W-T. Ionically crosslinked complex gels loaded with oleic acid-containing vesicles for transdermal. Drug Delivery. 2020;12(8):725.

    CAS 

    Google Scholar
     

  • Zaragoza J, Fukuoka S, Kraus M, Thomin J, Asuri P. Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites. Nanomaterials. 2018;8(11):882.

    PubMed Central 
    Article 

    Google Scholar
     

  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C-Mater Biol Appl. 2016;60:560–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sung B, Kim M-H, Abelmann L. Magnetic microgels and nanogels: physical mechanisms and biomedical applications. Bioeng Transl Med. 2021. https://doi.org/10.1002/btm2.10190.

    Article 
    PubMed 

    Google Scholar
     

  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58(15):1655–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lai W-F, Wong W-T. Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery. Pharmaceutics. 2021;13(6):787.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Menon MP, Selvakumar R, Kumar PS, Ramakrishna S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv. 2017;7(68):42750–73.

    Article 

    Google Scholar
     

  • Mali P, Sherje AP. Cellulose nanocrystals: fundamentals and biomedical applications. Carbohydr Polym. 2021;275:118668.

    PubMed 
    Article 

    Google Scholar
     

  • Piras CC, Fernandez-Prieto S, De Borggraeve WM. Nanocellulosic materials as bioinks for 3D bioprinting. Biomater Sci. 2017;5(10):1988–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petlin DG, Tverdokhlebov SI and Anissimov YG. Plasma treatment as an efficient tool for controlled drug release from
    polymeric materials: a review. J Controlled Release 2017;266:57–74.

  • Pereira I, Saleh M, Nunes C, Reis S, Veiga F, Paiva-Santos AC. Preclinical developments of natural-occurring halloysite clay nanotubes in cancer therapeutics. Adv Coll Interface Sci. 2021;291:102406.

    CAS 
    Article 

    Google Scholar
     

  • Santos AC, Ferreira C, Veiga F, Ribeiro AJ, Panchal A, Lvov Y, Agarwal A. Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv colloid Interface Sci 2018;257:58–70.

  • Danyliuk N, Tomaszewska J, Tatarchuk T. Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications. J Mol Liq. 2020;309:113077.

    CAS 
    Article 

    Google Scholar
     

  • Pereira C, Araujo F, Granja PL, Santos HA, Sarmento B. Targeting membrane transporters and receptors as a mean to optimize orally delivered biotechnological based drugs through nanoparticle delivery systems. Curr Pharm Biotechnol. 2014;15(7):650-8.

  • Sun W, Hu Q, Ji W, Wright G, Gu Z. Leveraging physiology for precision drug delivery. Physiol Rev. 2017;97:189–225.

  • Jhaveri A, Torchilin V. Intracellular delivery of nanocarriers and targeting to subcellular organelles. Expert Opin Drug Delivery. 2016:13:49–70.

  • Blanco E, Shen H, Ferrari M: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33:941–51.

  • Dartier J, Lemaitre E, Chourpa I, Goupille C, Servais S, Chevalier S, Maheo K, Dumas J-F: ATP-dependent activity and mitochondrial localization of drug efflux pumps in doxorubicin-resistant breast cancer cells. Biochimica Et Biophysica Acta-General Sub 2017;1861:1075–84.

  • Fonte P, Araujo F, Silva C, Pereira C, Reis S, Santos HA, Sarmento B. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv. 2015;33(6):1342–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Agarwal R, Roy K. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition. Ther Deliv. 2013;4(6):705–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F. Strategies toward the improved oral delivery of insulin nanoparticles via gastrointestinal uptake and translocation. Biodrugs. 2008;22:223–37.

  • Steinbach JM, Seo Y-E, Saltzman WM. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomaterialia. 2016;30:49–61.

  • Zhao W, Hu X, Li W, Li R, Chen J, Zhou L, Qiang S, Wu W, Shi S, Dong C. M2-like TAMs function reversal contributes to breast cancer eradication by combination dual immune checkpoint blockade and photothermal therapy. Small. 2021;17(13):2007051.

    CAS 
    Article 

    Google Scholar
     

  • Yang S, Shim MK, Kim WJ, Choi J, Nam G-H, Kim J, Kim J, Moon Y, Kim HY, Park J, Park Y, Kim I-S, Ryu JH, Kim K. Cancer-activated doxorubicin prodrug nanoparticles induce preferential immune response with minimal doxorubicin-related toxicity. Biomaterials. 2021;272: 120791.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee Y, Sugihara K, Gillilland MG III, Jon S, Kamada N, Moon JJ. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater. 2020;19(1):118–126.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao S, Li Y, Liu Q, Li S, Cheng Y, Cheng C, Sun Z, Du Y, Butch CJ, Wei H. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv Funct Mater. 2020;30(45):2004692.

    CAS 
    Article 

    Google Scholar
     

  • Medici S, Peana M, Pelucelli A, Zoroddu MA. An updated overview on metal nanoparticles toxicity. Semin Cancer Biol. 2021;76:17–26.

  • Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: a review. Sci Total Environ. 2021;759:143470.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang L, Wang YJ, Liu ZQ, Ma CY, Yan H, Xu N, Gang FL, Wang XM, Zhao LY, Sun XD. Three-dimensional printing and injectable conductive hydrogels for tissue engineering application. Tissue Eng Part B Rev. 2019;25(5):398–411.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P, Cabecadas J, Alves PM, Gualda EJ, Sommergruber W, Brito C. 3D-3-culture: a tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials. 2018;163:185–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020;18:100479.

    PubMed 
    Article 

    Google Scholar
     

  • Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14:1–15.

    Article 

    Google Scholar
     

  • Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J Pharm Sci. 2020;15(5):529–57.

    PubMed 
    Article 

    Google Scholar
     

  • Creff J, Courson R, Mangeat T, Foncy J, Souleille S, Thibault C, Besson A, Malaquin L. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials. 2019;221: 119404.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Winer DA, Luck H, Tsai S, Winer S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 2016;23(3):413–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Öhman L, Simrén M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol. 2010;7(3):163–73.

    PubMed 
    Article 

    Google Scholar
     

  • Pusch J, Votteler M, Goehler S, Engl J, Hampel M, Walles H, Schenke-Layland K. The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Biomaterials. 2011;32(30):7469–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Wu J, Chen J, Dou W, Zhao Q, Han J, Liu J, Su W, Li A, Liu P, An Z, Xu C, Sun Y. Advances in reconstructing intestinal functionalities in vitro: from two/three dimensional-cell culture platforms to human intestine-on-a-chip. Talanta. 2021;226:122097.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dosh RH, Essa A, Jordan-Mahy N, Sammon C, Le Maitre CL. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Acta Biomater. 2017;62:128–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Creff J, Courson R, Mangeat T, Foncy J, Souleille S, Thibault C, Besson A, Malaquin L. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials. 2019;221:119404.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bao L, Cui X, Wang X, Wu J, Guo M, Yan N, Chen C. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism. ACS Nano. 2021;15(10):15858–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bauleth-Ramos T, Feijao T, Goncalves A, Shahbazi M-A, Liu Z, Barrias C, Oliveira MJ, Granja P, Santos HA, Sarmento B. Colorectal cancer triple co -culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. J Control Release. 2020;323:398–411.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biagini F, Calvigioni M, Lapomarda A, Vecchione A, Magliaro C, De Maria C, Montemurro F, Celandroni F, Mazzantini D, Mattioli-Belmonte M, Ghelardi E, Vozzi G. A novel 3D in vitro model of the human gut microbiota. Sci Rep. 2020;10(1):21499.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW, Bein A, Swenor B, Nestor B, Cronce MJ, Tovaglieri A, Levy O, Gregory KE, Breault DT, Cabral JMS, Kasper DL, Novak R, Ingber DE. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 2019;3(7):520–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raju GSR, Pavitra E, Merchant N, Lee H, Prasad GLV, Nagaraju GP, Huh YS, Han YK. Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Lett. 2018;419:222–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol. 2021;910: 174464.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Youshia J, Lamprecht A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin Drug Deliv. 2016;13(2):281–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiong R, Vandenbroucke RE, Broos K, Brans T, Van Wonterghem E, Libert C, Demeester J, De Smedt SC, Braeckmans K. Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability. Nat Commun. 2016;7:12982.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha NK, Gupta PK, Thakur VK. Theranostic advances of bionanomaterials against gestational diabetes mellitus: a preliminary review. J Funct Biomater. 2021;12:54.

  • Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han SI, Han KH. Electrical detection method for circulating tumor cells using graphene nanoplates. Anal Chem. 2015;87(20):10585–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, Kim SY, Myung SJ, Lee S, Chen X, Kwon IC, Choi K, Jeong SY, Kim K, Park JH. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials. 2012;33(26):6186–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cohen S, Margel S. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer. J Nanobiotechnol. 2012;10(1):1–8.

    Article 

    Google Scholar
     

  • Danese S, Fiocchi C. Medical progress ulcerative colitis. N Engl J Med. 2011;365(18):1713–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Halfvarson J, Brislawn CJ, Lamendella R, Vazquez-Baeza Y, Walters WA, Bramer LM, D’Amato M, Bonfiglio F, McDonald D, Gonzalez A, McClure EE, Dunklebarger MF, Knight R, Jansson JK. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017. https://doi.org/10.1038/nmicrobiol.2017.4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elinav E, Peer D. Harnessing nanomedicine for mucosal theranostics–a silver bullet at last? ACS Nano. 2013;7(4):2883–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, Lee J, Sullenger B, Leong KW. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater 2022.

  • Wang J, Tao Z, Tian T, Qiu J, Qian H, Zha Z, Miao Z, Ma Y, Wang H. Polyoxometalate nanoclusters: a potential preventative and therapeutic drug for inflammatory bowel disease. Chem Eng J. 2021;416:129137.

    CAS 
    Article 

    Google Scholar
     

  • Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, Ma L, Cheng C, Guo Q, Qiu L. Biocatalytic and antioxidant nanostructures for ros scavenging and biotherapeutics. Adv Funct Mater. 2021;31(31):2101804.

    CAS 
    Article 

    Google Scholar
     

  • Feng W, Han X, Hu H, Chang M, Ding L, Xiang H, Chen Y, Li Y. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun. 2021;12.

  • Miao Z, Jiang S, Ding M, Sun S, Ma Y, Younis MR, He G, Wang J, Lin J, Cao Z, Huang P, Zha Z. Ultrasmall rhodium nanozyme with rons scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 2020;20(5):3079–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim DH, Cheon JH. Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. Immune Network. 2017;17(1):25–40.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun Q, Arif M, Chi Z, Li G, Liu C-G. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD). Int J Biol Macromol. 2021;169:206–15.

  • Bai H, Wang CU, Phan Q. Chen, X. Hu, G. Shao, J. Zhou, L. Lai, G. Tang, Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment, Nat Commun 2021;12(1)

  • Chang M, Hou Z, Jin D, Zhou J, Wang M, Wang M, Shu M, Ding B, Li C, Lin J. Colorectal tumor microenvironment-activated bio-decomposable and metabolizable Cu2O@CaCO(3)nanocomposites for synergistic oncotherapy. Adv Mater. 2020;32(43):2004647.

    CAS 
    Article 

    Google Scholar
     

  • Yan J, Yao Y, Yan S, Gao R, Lu W, He W. Chiral protein supraparticles for tumor suppression and synergistic immunotherapy: an enabling strategy for bioactive supramolecular chirality construction. Nano Lett. 2020;20(8):5844–52.

  • Dong L, Xia S, Luo Y, Diao H, Zhang J, Chen J, Zhang J. Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-alpha. J Control Release. 2009;134(3):214–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duan B, Li M, Sun Y, Zou S, Xu X. Orally Delivered antisense oligodeoxyribonucleotides of TNF-α via polysaccharide-based nanocomposites targeting intestinal inflammation. Adv Healthc Mater. 2019;8(5): e1801389.

    PubMed 
    Article 

    Google Scholar
     

  • Quiros M. Therapeutic opportunities for repair GPCRs during intestinal mucosal wound healing. Trends Mol Med. 2020;26(11):971–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol. 2017;10(2):307–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xiao Y, Lu C, Liu Y, Kong L, Bai H, Mu H, Li Z, Geng H, Duan J. Encapsulation of lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Appl Mater Interfaces. 2020;12(33):36967–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Gu H, Zhang H, Xian J, Li J, Fu C, Zhang C, Zhang J. Oral core-shell nanoparticles embedded in hydrogel microspheres for the efficient site-specific delivery of magnolol and enhanced antiulcerative colitis therapy. ACS Appl Mater Interfaces. 2021;13(29):33948–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, Yang Y, Wang Z, Ju H, Fu X, Zou L, Li M, Xue Q, Ma H, Meng Y, Zhao L, Qi H, Yu T. Multistage-responsive nanocomplexes attenuate ulcerative colitis by improving the accumulation and distribution of oral nucleic acid drugs in the colon. ACS Appl Mater Interfaces. 2022;14(1):2058–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu J, Liu Y, Liu S, Ou W, White A, Stewart S, Tkaczuk KHR, Ellis LM, Wan J, Lu X, He X. Metformin bicarbonate-mediated efficient RNAi for precise targeting of TP53 deficiency in colon and rectal cancers. Nano Today. 2022;43:101406.

  • Hartwig O, Loretz B, Nougarede A, Jary D, Sulpice E, Gidrol X, Navarro F, Lehr CM. Leaky gut model of the human intestinal mucosa for testing siRNA-based nanomedicine targeting JAK1, J Control Release. 2022;345:646–60.

  • Daoben H, Zhang Y, Wang L, Yang S. Radioprotective nanodrug for small intestine and preparation method thereof. Google Patents; 2022.

  • Gu FX, Jones LWJ, Shengyan Sandy L. Mucoadhesive nanoparticle delivery system, Google Patents; 2018.

  • Wei H, Zhao S, Li Y, Liu Q. Medicine for inflammatory bowel disease and preparation method and application thereof, Univ. Nanjing, China; 2020.

  • Jiang P, Ji Z, Wang X, Zhou F. Surface functionalization – a new functional dimension added to 3D printing. J Mater Chem C. 2020;8(36):12380–12411.

  • Cifuentes-Rius A, Desai A, Yuen D, Johnston APR, Voelcker NH. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat Nanotechnol. 2021;16(1):37–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lamprecht A. Nanomedicines in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol. 2015;12(4):195–204.

    CAS 
    PubMed 
    Article 

    Google Scholar