Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite photo voltaic cells

0
36


  • 1.

    Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. Excessive-efficiency perovskite photo voltaic cells. Chem. Rev. 120, 7867–7918 (2020).

    CAS 

    Google Scholar
     

  • 2.

    Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    CAS 

    Google Scholar
     

  • 3.

    Saliba, M. et al. Cesium-containing triple cation perovskite photo voltaic cells: improved stability, reproducibility and excessive effectivity. Power Environ. Sci. 9, 1989–1997 (2016).

    CAS 

    Google Scholar
     

  • 4.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite photo voltaic cells improves photovoltaic efficiency. Science 354, 206–209 (2016).

    CAS 

    Google Scholar
     

  • 5.

    Abdi-Jalebi, M. et al. Maximising and stabilising luminescence in steel halide perovskite gadget constructions. Nature 555, 497–501 (2018).

    CAS 

    Google Scholar
     

  • 6.

    Tong, J. et al. Service lifetimes of >1 μs in Sn-Pb perovskites allow environment friendly all-perovskite tandem photo voltaic cells. Science 364, 475 (2019).

    CAS 

    Google Scholar
     

  • 7.

    Köhnen, E. et al. Extremely environment friendly monolithic perovskite silicon tandem photo voltaic cells: analyzing the affect of present mismatch on gadget efficiency. Maintain. Power Fuels 3, 1995–2005 (2019).


    Google Scholar
     

  • 8.

    Xu, J. et al. Triple-halide broad–band hole perovskites with suppressed section segregation for environment friendly tandems. Science 367, 1097 (2020).

    CAS 

    Google Scholar
     

  • 9.

    Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem photo voltaic cell with >29% effectivity by enhanced gap extraction. Science 370, 1300 (2020).

    CAS 

    Google Scholar
     

  • 10.

    Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at a number of size scales in halide perovskite semiconductors. Nat. Rev. Mater. https://doi.org/10.1038/s41578-019-0125-0 (2019).

  • 11.

    de Quilettes, D. W. et al. Influence of microstructure on native provider lifetime in perovskite photo voltaic cells. Science 348, 683 (2015).


    Google Scholar
     

  • 12.

    deQuilettes, D. W. et al. Monitoring photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11, 11488–11496 (2017).

    CAS 

    Google Scholar
     

  • 13.

    El-Hajje, G. et al. Quantification of spatial inhomogeneity in perovskite photo voltaic cells by hyperspectral luminescence imaging. Power Environ. Sci. 9, 2286–2294 (2016).

    CAS 

    Google Scholar
     

  • 14.

    Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite photo voltaic cells. Nat. Power 3, 847–854 (2018).

    CAS 

    Google Scholar
     

  • 15.

    Doherty, T. A. S. et al. Efficiency-limiting nanoscale entice clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    CAS 

    Google Scholar
     

  • 16.

    Grancini, G. et al. One-year secure perovskite photo voltaic cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    CAS 

    Google Scholar
     

  • 17.

    Ni, Z. et al. Resolving spatial and energetic distributions of entice states in steel halide perovskite photo voltaic cells. Science 367, 1352–1358 (2020).

    CAS 

    Google Scholar
     

  • 18.

    Jariwala, S. et al. Native crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).

    CAS 

    Google Scholar
     

  • 19.

    Jones, T. W. et al. Lattice pressure causes non-radiative losses in halide perovskites. Power Environ. Sci. 12, 596–606 (2019).

    CAS 

    Google Scholar
     

  • 20.

    Kim, G. et al. Influence of pressure leisure on efficiency of α-formamidinium lead iodide perovskite photo voltaic cells. Science 370, 108 (2020).

    CAS 

    Google Scholar
     

  • 21.

    Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627 (2019).

    CAS 

    Google Scholar
     

  • 22.

    Hoke, E. T. et al. Reversible photo-induced entice formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS 

    Google Scholar
     

  • 23.

    Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Mild-induced section segregation in halide-perovskite absorbers. ACS Power Lett. 1, 1199–1205 (2016).

    CAS 

    Google Scholar
     

  • 24.

    Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Mild-induced anion section segregation in blended halide perovskites. ACS Power Lett. 3, 204–213 (2018).

    CAS 

    Google Scholar
     

  • 25.

    Leijtens, T., Bush, Okay. A., Prasanna, R. & McGehee, M. D. Alternatives and challenges for tandem photo voltaic cells utilizing steel halide perovskite semiconductors. Nat. Power 3, 828–838 (2018).

    CAS 

    Google Scholar
     

  • 26.

    Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite photo voltaic cells. Power Environ. Sci. 13, 258–267 (2020).

    CAS 

    Google Scholar
     

  • 27.

    Feldmann, S. et al. Photodoping by native cost provider accumulation in alloyed hybrid perovskites for extremely environment friendly luminescence. Nat. Photonics 14, 123–128 (2020).

    CAS 

    Google Scholar
     

  • 28.

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Sturdy inner and exterior luminescence as photo voltaic cells strategy the Shockley–Queisser restrict. IEEE J. Photovolt. 2, 303–311 (2012).


    Google Scholar
     

  • 29.

    Galisteo-López, J. F., Anaya, M., Calvo, M. E. & Míguez, H. Environmental results on the photophysics of natural–inorganic halide perovskites. J. Phys. Chem. Lett. 6, 2200–2205 (2015).


    Google Scholar
     

  • 30.

    Andaji-Garmaroudi, Z., Anaya, M., Pearson, A. J. & Stranks, S. D. Photobrightening in lead halide perovskites: observations, mechanisms, and future potential. Adv. Power Mat. 10, 1903109 (2020).

    CAS 

    Google Scholar
     

  • 31.

    Katahara, J. Okay. & Hillhouse, H. W. Quasi-Fermi stage splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014).


    Google Scholar
     

  • 32.

    Stolterfoht, M. et al. The impression of power alignment and interfacial recombination on the interior and exterior open-circuit voltage of perovskite photo voltaic cells. Power Environ. Sci. 12, 2778–2788 (2019).

    CAS 

    Google Scholar
     

  • 33.

    Wang, J. et al. Decreasing floor recombination velocities on the electrical contacts will enhance perovskite photovoltaics. ACS Power Lett. 4, 222–227 (2019).

    CAS 

    Google Scholar
     

  • 34.

    Mann, S. A. et al. Quantifying losses and thermodynamic limits in nanophotonic photo voltaic cells. Nat. Nanotechnol. 11, 1071–1075 (2016).

    CAS 

    Google Scholar
     

  • 35.

    de Mello, J. C., Wittmann, H. F. & Buddy, R. H. An improved experimental willpower of exterior photoluminescence quantum effectivity. Adv. Mater. 9, 230–232 (1997).


    Google Scholar
     

  • 36.

    Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light-weight out-coupling. Nat. Commun. 7, 13941 (2016).

    CAS 

    Google Scholar
     

  • 37.

    Ross, R. T. Some thermodynamics of photochemical techniques. J. Chem. Phys. 46, 4590–4593 (1967).

    CAS 

    Google Scholar
     

  • 38.

    Ledinsky, M. et al. Temperature dependence of the Urbach power in lead iodide perovskites. J. Phys. Chem. Lett. 10, 1368–1373 (2019).

    CAS 

    Google Scholar
     

  • 39.

    Urbach, F. The long-wavelength fringe of photographic sensitivity and of the digital absorption of solids. Phys. Rev. 92, 1324–1324 (1953).

    CAS 

    Google Scholar
     

  • 40.

    Piccardo, M. et al. Localization panorama principle of dysfunction in semiconductors. II. Urbach tails of disordered quantum nicely layers. Phys. Rev. B. 95, 144205 (2017).


    Google Scholar
     

  • 41.

    Rolston, N. et al. Engineering stress in perovskite photo voltaic cells to enhance stability. Adv. Power Mat. 8, 1802139 (2018).


    Google Scholar
     

  • 42.

    Martín-Sánchez, J. et al. Pressure-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators. Semicond. Sci. Technol. 33, 013001 (2017).


    Google Scholar
     

  • 43.

    Bioud, Y. A. et al. Uprooting defects to allow high-performance III–V optoelectronic gadgets on silicon. Nat. Commun. 10, 4322 (2019).


    Google Scholar
     

  • 44.

    Hubbard, S. M. et al. Impact of pressure compensation on quantum dot enhanced GaAs photo voltaic cells. Appl. Phys. Lett. 92, 123512 (2008).


    Google Scholar
     

  • 45.

    Merdasa, A. et al. Eye within the course of: formation of ‘triple cation‘ perovskite skinny movies rationalized by in-situ optical monitoring. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-102041/v1 (2021).

  • 46.

    Man, M. Okay. L. et al. Imaging the movement of electrons throughout semiconductor heterojunctions. Nat. Nanotechnol. 12, 36–40 (2017).

    CAS 

    Google Scholar
     

  • 47.

    Deng, S., Blach, D. D., Jin, L. & Huang, L. Imaging provider dynamics and transport in hybrid perovskites with transient absorption microscopy. Adv. Power Mat. 10, 1903781 (2020).

    CAS 

    Google Scholar
     

  • 48.

    Herz, L. M. Cost-carrier dynamics in organic-inorganic steel halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).

    CAS 

    Google Scholar
     

  • 49.

    Yuan, M. et al. Perovskite power funnels for environment friendly light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS 

    Google Scholar
     

  • 50.

    Li, C. et al. Conformational dysfunction of natural cations tunes the cost provider mobility in two-dimensional organic-inorganic perovskites. Nat. Commun. 11, 5481 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Szostak, R. et al. Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite movies. Sci. Adv. 5, eaaw6619 (2019).

    CAS 

    Google Scholar
     

  • 52.

    Zhao, J. et al. Strained hybrid perovskite skinny movies and their impression on the intrinsic stability of perovskite photo voltaic cells. Sci. Adv. 3, eaao5616 (2017).


    Google Scholar
     

  • 53.

    Xue, D.-J. et al. Regulating pressure in perovskite skinny movies by charge-transport layers. Nat. Commun. 11, 1514 (2020).

    CAS 

    Google Scholar
     

  • 54.

    Lasher, G. & Stern, F. Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553–A563 (1964).


    Google Scholar
     

  • 55.

    Wurfel, P. The chemical potential of radiation. J. Phys. C: Strong State Phys. 15, 3967–3985 (1982).


    Google Scholar
     

  • 56.

    Brüggemann, R., Schulze, P., Neumann, O., Witte, W. & Bauer, G. H. Relation between luminescence and open-circuit voltage in Cu(In,Ga)Se2 photo voltaic cells. Skinny Strong Movies 535, 283–286 (2013).


    Google Scholar
     

  • 57.

    Sträter, H. et al. Detailed photoluminescence research of skinny movie Cu2S for willpower of quasi-Fermi stage splitting and defect ranges. J. Appl. Phys. 114, 233506 (2013).


    Google Scholar
     

  • 58.

    Babbe, F., Choubrac, L. & Siebentritt, S. Quasi Fermi stage splitting of Cu-rich and Cu-poor Cu(In,Ga)Se2 absorber layers. Appl. Phys. Lett. 109, 082105 (2016).


    Google Scholar
     

  • 59.

    Braly, I. L., Stoddard, R. J., Rajagopal, A., Jen, A. Okay. Y. & Hillhouse, H. W. Photoluminescence and photoconductivity to evaluate most open-circuit voltage and provider transport in hybrid perovskites and different photovoltaic supplies. J. Phys. Chem. Lett. 9, 3779–3792 (2018).

    CAS 

    Google Scholar
     

  • 60.

    Halperin, B. I. & Lax, M. Impurity-band tails within the high-density restrict. I. Minimal counting strategies. Phys. Rev. 148, 722–740 (1966).

    CAS 

    Google Scholar
     

  • 61.

    Braly, I. L. et al. Hybrid perovskite movies approaching the radiative restrict with over 90% photoluminescence quantum effectivity. Nat. Photonics 12, 355–361 (2018).

    CAS 

    Google Scholar
     

  • 62.

    Quinn, P. D. et al. The Laborious X-ray Nanoprobe beamline at Diamond Mild Supply. J. Synchrotron Radiat. 28, 1006–1013 (2021).

    CAS 

    Google Scholar
     

  • 63.

    Marchal, J. et al. EXCALIBUR: a small-pixel photon counting space detector for coherent X-ray diffraction—front-end design, fabrication and characterisation. J. Phys. Conf. Ser. 425, 062003 (2013).


    Google Scholar
     

  • 64.

    de la Peña, F. et al. hyperspy/hyperspy: Hyperspy v.1.5.2 (Zenodo, 2019); https://doi.org/10.5281/zenodo.1221347

  • 65.

    Kodur, M. et al. X-ray microscopy of halide perovskites: methods, functions, and prospects. Adv. Power Mat. 10, 1903170 (2020).

    CAS 

    Google Scholar
     

  • 66.

    Pareja-Rivera, C., Solís-Cambero, A. L., Sánchez-Torres, M., Lima, E. & Solis-Ibarra, D. On the true composition of mixed-cation perovskite movies. ACS Power Lett. 3, 2366–2367 (2018).

    CAS 

    Google Scholar
     

  • 67.

    Virtanen, P. et al. SciPy 1.0: basic algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).

    CAS 

    Google Scholar
     

  • 68.

    Schnedermann, C. et al. Sub-10 fs time-resolved vibronic optical microscopy. J. Phys. Chem. Lett. 7, 4854–4859 (2016).

    CAS 

    Google Scholar