Intercellular nanotubes mediate mitochondrial trafficking between most cancers and immune cells

0
58


  • 1.

    Wei, S. C. et al. Distinct mobile mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133.e17 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint remedy. Nat. Rev. Immunol. 20, 75–76 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Wolchok, J. Placing the immunologic brakes on most cancers. Cell 175, 1452–1454 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Kulkarni, A. et al. A designer self-assembled supramolecule amplifies macrophage immune responses in opposition to aggressive most cancers. Nat. Biomed. Eng. 2, 589–599 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Wei, S. C., Duffy, C. R. & Allison, J. P. Basic mechanisms of immune checkpoint blockade remedy. Most cancers Discov. 8, 1069–1086 (2018).

    Article 

    Google Scholar
     

  • 6.

    Tseng, D. et al. Anti-CD47 antibody–mediated phagocytosis of most cancers by macrophages primes an efficient antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Sharma, P. & Allison, J. P. The way forward for immune checkpoint remedy. Science 348, 56–61 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Önfelt, B., Nedvetzki, S., Yanagi, Okay. & Davis, D. M. Leading edge: membrane nanotubes join immune cells. J. Immunol. 173, 1511–1513 (2004).

    Article 

    Google Scholar
     

  • 9.

    Sowinski, S. et al. Membrane nanotubes bodily join T cells over lengthy distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219 (2008).

    Article 

    Google Scholar
     

  • 10.

    Gousset, Okay. et al. Prions hijack tunnelling nanotubes for intercellular unfold. Nat. Cell Biol. 11, 328–336 (2009).

    Article 

    Google Scholar
     

  • 11.

    Osswald, M. et al. Mind tumour cells interconnect to a useful and resistant community. Nature 528, 93–98 (2015).

    Article 

    Google Scholar
     

  • 12.

    Connor, Y. et al. Bodily nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat. Commun. 6, 8671 (2015).

  • 13.

    Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H.-H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ahmad, T. et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33, 994–1010 (2014).

    CAS 

    Google Scholar
     

  • 15.

    Wang, X. & Gerdes, H. H. Switch of mitochondria by way of tunneling nanotubes rescues apoptotic PC12 cells. Cell Loss of life Differ. 22, 1181–1191 (2015).


    Google Scholar
     

  • 16.

    Lu, J. et al. Tunneling nanotubes promote intercellular mitochondria switch adopted by elevated invasiveness in bladder most cancers cells. Oncotarget 8, 15539–15552 (2017).

    Article 

    Google Scholar
     

  • 17.

    Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation by way of reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kumar, A. et al. Enhanced oxidative phosphorylation in NKT cells is important for his or her survival and performance. Proc. Natl Acad. Sci. USA 116, 7439–7448 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria and most cancers. Cell 166, 555–566 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Goldman, A. et al. Concentrating on tumor phenotypic plasticity and metabolic reworking in adaptive cross-drug tolerance. Sci. Sign. 12, eaas8779 (2019).

    Article 

    Google Scholar
     

  • 21.

    Clutton, G., Mollan, Okay., Hudgens, M. & Goonetilleke, N. A reproducible, goal methodology utilizing MitoTracker® fluorescent dyes to evaluate mitochondrial mass in T cells by move cytometry. Cytometry 95, 450–456 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Pham, A. H., McCaffery, J. M. & Chan, D. C. Mouse strains with photo-activatable mitochondria to check mitochondrial dynamics. Genesis 50, 833–843 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Pelletier, M., Billingham, L. Okay., Ramaswamy, M. & Siegel, R. M. in Strategies Enzymol, Vol. 542 (eds Galluzzi, L. & Kroemer, G.) 125–149 (Educational Press, 2014).

  • 24.

    Kaplon, J. et al. A key function for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

    Article 

    Google Scholar
     

  • 25.

    Hase, Okay. et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst advanced. Nat. Cell Biol. 11, 1427–1432 (2009).

    Article 

    Google Scholar
     

  • 26.

    Hashimoto, M. et al. Potential function of the formation of tunneling nanotubes in HIV-1 unfold in macrophages. J. Immunol. 196, 1832–1841 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Moskalenko, S. et al. The exocyst is a Ral effector advanced. Nat. Cell Biol. 4, 66–72 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Hanna, S. J. et al. The function of Rho-GTPases and actin polymerization throughout macrophage tunneling nanotube biogenesis. Sci. Rep. 7, 8547 (2017).

    Article 

    Google Scholar
     

  • 29.

    Guo, W., Tamanoi, F. & Novick, P. Spatial regulation of the exocyst advanced by Rho1 GTPase. Nat. Cell Biol. 3, 353–360 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Fransson, Å., Ruusala, A. & Aspenström, P. The atypical Rho GTPases Miro-1 and Miro-2 have important roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun. 344, 500–510 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is gentle chain unbiased. J. Cell Biol. 173, 545–557 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Arkwright, P. D. et al. Fas stimulation of T lymphocytes promotes speedy intercellular trade of dying indicators by way of membrane nanotubes. Cell Res. 20, 72–88.

  • 33.

    Bustelo, X. R., Sauzeau, V. & Berenjeno, I. M. GTP-binding proteins of the Rho/Rac household: regulation, effectors and capabilities in vivo. Bioessays 29, 356–370 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Majumder, B. et al. Predicting medical response to anticancer medicine utilizing an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 6, 6169 (2015).

    CAS 
    Article 

    Google Scholar