Giant-area nanoengineering of graphene corrugations for visible-frequency graphene plasmons

0
51


  • 1.

    Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Power band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).


    Google Scholar
     

  • 2.

    Abajo, F. J. G. Graphene plasmonics: challenges and alternatives. ACS Photonics 1, 135–152 (2014).


    Google Scholar
     

  • 3.

    Magda, G. Z. et al. Room temperature magnetic order on zigzag edges of slim graphene nanoribbons. Nature 514, 608–611 (2014).

    CAS 

    Google Scholar
     

  • 4.

    Feng, W., Lengthy, P., Feng, Y. & Li, Y. Two-dimensional fluorinated graphene: synthesis, buildings, properties and functions. Adv. Sci. 3, 1500413 (2016).


    Google Scholar
     

  • 5.

    Cortes-del Rio, E. et al. Quantum confinement of Dirac quasiparticles in graphene patterned with sub‐nanometer precision. Adv. Mater. 32, 2001119 (2020).

    CAS 

    Google Scholar
     

  • 6.

    Yang, Y. & Murali, R. Affect of measurement impact on graphene nanoribbon transport. IEEE Electron System Lett. 31, 237–239 (2010).


    Google Scholar
     

  • 7.

    Xu, Q. et al. Impact of edge on graphene plasmons as revealed by infrared nanoimaging. Mild Sci. Appl. 6, e16204 (2017).

    CAS 

    Google Scholar
     

  • 8.

    Thongrattanasiri, S., Manjavacas, A. & Abajo, F. J. G. Quantum finite-size results in graphene plasmons. ACS Nano 6, 1766–1775 (2012).

    CAS 

    Google Scholar
     

  • 9.

    Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    CAS 

    Google Scholar
     

  • 10.

    Sasaki, Okay. I. & Saito, R. Pseudospin and deformation-induced gauge area in graphene. Prog. Theor. Phys. Suppl. 176, 253–278 (2008).

    CAS 

    Google Scholar
     

  • 11.

    Kun, P. et al. Giant intravalley scattering on account of pseudo-magnetic fields in crumpled graphene. NPJ 2D Mater. Appl. 3, 11 (2019).


    Google Scholar
     

  • 12.

    Zhao, J. et al. Creating and probing electron whispering gallery modes in graphene. Science 348, 672–675 (2015).

    CAS 

    Google Scholar
     

  • 13.

    Lee, J. et al. Imaging electrostaically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).

    CAS 

    Google Scholar
     

  • 14.

    Grigorenko, A. N., Polini, M. & Novoselov, Okay. S. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

    CAS 

    Google Scholar
     

  • 15.

    Koppens, F. H. L., Chang, D. E. & Abajo, F. J. G. Graphene plasmonics: a platform for sturdy mild–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    CAS 

    Google Scholar
     

  • 16.

    Hugen, Y. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 7, 394–399 (2013).


    Google Scholar
     

  • 17.

    Fang, Z. et al. Lively tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014).

    CAS 

    Google Scholar
     

  • 18.

    Hu, H. et al. Fuel identification with graphene plasmons. Nat. Commun. 10, 1131 (2019).


    Google Scholar
     

  • 19.

    Geringer, V. et al. Intrinsic and extrinsic corrugation of graphene deposited on SiO2. Phys. Rev. Lett. 102, 076102 (2009).

    CAS 

    Google Scholar
     

  • 20.

    Márk, G. et al. Simulation of STM pictures of three-dimensional surfaces and comparability with experimental knowledge: carbon nanotubes. Phys. Rev. B 58, 12645–12648 (1998).


    Google Scholar
     

  • 21.

    Bao, W. et al. Managed ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009).

    CAS 

    Google Scholar
     

  • 22.

    Koenig, S. P. et al. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    CAS 

    Google Scholar
     

  • 23.

    Tapasztó, L. et al. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 8, 739–742 (2012).


    Google Scholar
     

  • 24.

    Lim, H., Jung, J., Ruoff, R. S. & Kim, Y. Structurally pushed one-dimensional electron confinement in sub-5-nm graphene nanowrinkles. Nat. Commun. 6, 8601 (2015).

    CAS 

    Google Scholar
     

  • 25.

    Carillo-Bastos, R., Faria, D., Latge, A., Mireles, F. & Sandler, N. Gaussian deformations in graphene ribbons: flowers and confinement. Phys. Rev. B 90, 041411(R) (2014).


    Google Scholar
     

  • 26.

    Walker, G. M. M., Tiwari, R. P. & Blaauboer, M. Localization and circulating currents in curved graphene gadgets. Phys. Rev. B 84, 195427 (2011).


    Google Scholar
     

  • 27.

    Klimov, N. N. et al. Electromechanical properties of graphene drumheads. Science 336, 1557–1561 (2012).

    CAS 

    Google Scholar
     

  • 28.

    Wu, Y. et al. Quantum wires and waveguides fashioned in graphene by pressure. Nano Lett. 18, 64–69 (2018).

    CAS 

    Google Scholar
     

  • 29.

    Ling, X. et al. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10, 553–561 (2010).

    CAS 

    Google Scholar
     

  • 30.

    Huang, S. et al. Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett. 15, 2892–2901 (2015).

    CAS 

    Google Scholar
     

  • 31.

    Feng, S. et al. Ultrasensitive molecular sensor utilizing N-doped graphene by way of enhanced Raman scattering. Sci. Adv. 22, e1600322 (2016).


    Google Scholar
     

  • 32.

    Gregory, P. Industrial functions of phthalocyanines. J. Porphyr. Phthalocyanines 4, 432–437 (2000).

    CAS 

    Google Scholar
     

  • 33.

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    CAS 

    Google Scholar
     

  • 34.

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    CAS 

    Google Scholar
     

  • 35.

    Stockman, M. I., Faleev, S. V. & Bergman, D. J. Localization versus delocalization of floor plasmons in nanosystems: can one state have each traits? Phys. Rev. Lett. 87, 167401 (2001).

    CAS 

    Google Scholar
     

  • 36.

    Maier, S. A. et al. Native detection of electromagnetic vitality transport under the diffraction restrict in steel nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003).

    CAS 

    Google Scholar
     

  • 37.

    Ruting, F. Plasmons in disordered nanoparticle chains: Localization and transport. Phys. Rev. B 83, 115447 (2011).


    Google Scholar
     

  • 38.

    Plimpton, S. J. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS 

    Google Scholar
     

  • 39.

    Los, J. H. & Fasolino, A. Intrinsic long-range bond-order potential for carbon. Phys. Rev. B 68, 024107 (2003).


    Google Scholar
     

  • 40.

    Tersoff, J. New empirical method for the construction and vitality of covalent techniques. Phys. Rev. B 37, 6991–7000 (1988).

    CAS 

    Google Scholar
     

  • 41.

    Soler, J. M. et al. The SIESTA technique for ab initio order-N supplies simulations. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    CAS 

    Google Scholar
     

  • 42.

    Yan, J., Mortensen, J. J., Jacobsen, Okay. W. & Thygesen, Okay. S. Linear density response operate within the projector augmented wave technique: Purposes to solids, surfaces, and interfaces. Phys. Rev. B 83, 245122 (2011).


    Google Scholar
     

  • 43.

    Andersen, Okay., Jacobsen, Okay. W. & Thygesen, Okay. S. Spatially resolved quantum plasmon modes in metallic nano-films from first-principles. Phys. Rev. B 86, 245129 (2012).


    Google Scholar
     

  • 44.

    Ceperley, D. M. & Alder, B. J. Floor state of the electron fuel by a stochastic mannequin. Phys. Rev. Lett. 45, 566–569 (1980).

    CAS 

    Google Scholar
     

  • 45.

    Colliex, C., Kociak, M. & Stephan, O. Electron energy-loss spectroscopy imaging of floor plasmons on the nanometer scale. Ultramicroscopy 162, A1–A24 (2016).

    CAS 

    Google Scholar