Digital thermal transport measurement in low-dimensional supplies with graphene non-local noise thermometry

0
41


  • 1.

    Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853).


    Google Scholar
     

  • 2.

    Wakeham, N. et al. Gross violation of the Wiedemann–Franz regulation in a quasi-one-dimensional conductor. Nat. Commun. 2, 396 (2011).


    Google Scholar
     

  • 3.

    Smith, R. P. et al. Marginal breakdown of the Fermi-liquid state on the border of metallic ferromagnetism. Nature 455, 1220–1223 (2008).

    CAS 

    Google Scholar
     

  • 4.

    Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic violation of the Wiedemann–Franz regulation at a quantum important level. Science 316, 1320–1322 (2007).

    CAS 

    Google Scholar
     

  • 5.

    Hill, R. W., Proust, C., Taillefer, L., Fournier, P. & Greene, R. L. Breakdown of Fermi-liquid idea in a copper-oxide superconductor. Nature 414, 711–715 (2001).

    CAS 

    Google Scholar
     

  • 6.

    Crossno, J. et al. Commentary of the Dirac fluid and the breakdown of the Wiedemann–Franz regulation in graphene. Science 351, 1058–1061 (2016).

    CAS 

    Google Scholar
     

  • 7.

    Zhou, Y. et al. Bilayer Wigner crystals in a transition metallic dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    CAS 

    Google Scholar
     

  • 8.

    Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).


    Google Scholar
     

  • 9.

    Shapir, I. et al. Imaging the digital Wigner crystal in a single dimension. Science 364, 870–875 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    CAS 

    Google Scholar
     

  • 11.

    Mak, Okay. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).


    Google Scholar
     

  • 12.

    Li, M. & Chen, G. Thermal transport for probing quantum supplies. MRS Bull. 45, 348–356 (2020).


    Google Scholar
     

  • 13.

    Tritt, T. M. Thermal Conductivity (Kluwer Educational and Plenum Press, 2004).


    Google Scholar
     

  • 14.

    Jezouin, S. et al. Quantum restrict of warmth stream throughout a single digital channel. Science 342, 601–604 (2013).

    CAS 

    Google Scholar
     

  • 15.

    Banerjee, M. et al. Noticed quantization of anyonic warmth stream. Nature 545, 75–79 (2017).

    CAS 

    Google Scholar
     

  • 16.

    Banerjee, M. et al. Commentary of half-integer thermal Corridor conductance. Nature https://doi.org/10.1038/s41586-018-0184-1 (2018).

  • 17.

    Srivastav, S. Okay. et al. Common quantized thermal conductance in graphene. Sci. Adv. 5, eaaw5798 (2019).

    CAS 

    Google Scholar
     

  • 18.

    Dutta, B. et al. Thermal conductance of a single-electron transistor. Phys. Rev. Lett. 119, 077701 (2017).

    CAS 

    Google Scholar
     

  • 19.

    Cui, L. et al. Quantized thermal transport in single-atom junctions. Science 355, 1192–1195 (2017).

    CAS 

    Google Scholar
     

  • 20.

    Mosso, N. et al. Warmth transport by means of atomic contacts. Nat. Nanotechnol. 12, 430–433 (2017).

    CAS 

    Google Scholar
     

  • 21.

    Crossno, J., Liu, X., Ohki, T. A., Kim, P. & Fong, Okay. C. Growth of excessive frequency and large bandwidth Johnson noise thermometry. Appl. Phys. Lett. 106, 023121 (2015).


    Google Scholar
     

  • 22.

    Fong, Okay. C. et al. Measurement of the digital thermal conductance channels and warmth capability of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).

    CAS 

    Google Scholar
     

  • 23.

    Chiatti, O. et al. Quantum thermal conductance of electrons in a one-dimensional wire. Phys. Rev. Lett. 97, 056601 (2006).

    CAS 

    Google Scholar
     

  • 24.

    Molenkamp, L. W. et al. Peltier coefficient and thermal conductance of a quantum level contact. Phys. Rev. Lett. 68, 3765–3768 (1992).

    CAS 

    Google Scholar
     

  • 25.

    Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    CAS 

    Google Scholar
     

  • 26.

    Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of particular person multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    CAS 

    Google Scholar
     

  • 27.

    Mosso, N. et al. Thermal transport by means of single-molecule junctions. Nano Lett. 19, 7614–7622 (2019).

    CAS 

    Google Scholar
     

  • 28.

    Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019).

    CAS 

    Google Scholar
     

  • 29.

    Johnson, J. B. Thermal agitation of electrical energy in conductors. Phys. Rev. 32, 97–109 (1928).

    CAS 

    Google Scholar
     

  • 30.

    Nyquist, H. Thermal agitation of electrical cost in conductors. Phys. Rev. 32, 110–113 (1928).

    CAS 

    Google Scholar
     

  • 31.

    Qu, J. F. et al. Johnson noise thermometry. Meas. Sci. Technol. 30, 112001 (2019).

    CAS 

    Google Scholar
     

  • 32.

    Fong, Okay. C. & Schwab, Okay. C. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).


    Google Scholar
     

  • 33.

    Yiǧen, S. & Champagne, A. R. Wiedemann–franz relation and thermal-transistor impact in suspended graphene. Nano Lett. 14, 289–293 (2014).


    Google Scholar
     

  • 34.

    Sukhorukov, E. V. & Loss, D. Noise in multiterminal diffusive conductors: universality, nonlocality, and alternate results. Phys. Rev. B 59, 13054–13066 (1999).

    CAS 

    Google Scholar
     

  • 35.

    Talanov, A. V., Waissman, J., Taniguchi, T., Watanabe, Okay. & Kim, P. Excessive-bandwidth, variable-resistance differential noise thermometry. Rev. Sci. Instrum. 92, 014904 (2021).

    CAS 

    Google Scholar
     

  • 36.

    Pozderac, C. & Skinner, B. Relation between Johnson noise and heating energy in a two-terminal conductor. Phys. Rev. B 104, L161403 (2021).


    Google Scholar
     

  • 37.

    Principi, A. & Vignale, G. Violation of the Wiedemann–Franz regulation in hydrodynamic electron liquids. Phys. Rev. Lett. 115, 056603 (2015).


    Google Scholar
     

  • 38.

    Lucas, A. & Das Sarma, S. Digital hydrodynamics and the breakdown of the Wiedemann–Franz and Mott legal guidelines in interacting metals. Phys. Rev. B 97, 245128 (2018).

    CAS 

    Google Scholar
     

  • 39.

    Li, S., Levchenko, A. & Andreev, A. V. Hydrodynamic electron transport close to cost neutrality. Phys. Rev. B 102, 075305 (2020).

    CAS 

    Google Scholar
     

  • 40.

    Xie, H.-Y. & Foster, M. S. Transport coefficients of graphene: interaction of impurity scattering, Coulomb interplay, and optical phonons. Phys. Rev. B 93, 195103 (2016).


    Google Scholar
     

  • 41.

    Lucas, A., Davison, R. A. & Sachdev, S. Hydrodynamic idea of thermoelectric transport and detrimental magnetoresistance in Weyl semimetals. Proc. Natl Acad. Sci. USA 113, 9463–9468 (2016).

    CAS 

    Google Scholar
     

  • 42.

    Zarenia, M., Principi, A. & Vignale, G. Dysfunction-enabled hydrodynamics of cost and warmth transport in monolayer graphene. 2D Mater. 6, 035024 (2019).

    CAS 

    Google Scholar
     

  • 43.

    Zarenia, M., Smith, T. B., Principi, A. & Vignale, G. Breakdown of the Wiedemann–Franz regulation in AB-stacked bilayer graphene. Phys. Rev. B 99, 161407 (2019).

    CAS 

    Google Scholar
     

  • 44.

    Lucas, A. & Fong, Okay. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 53001 (2018).


    Google Scholar
     

  • 45.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 utilizing a van der Waals heterostructure machine platform. Nat. Nanotechnol. 10, 534–540 (2015).

    CAS 

    Google Scholar
     

  • 46.

    Liu, Y. et al. Towards barrier free contact to molybdenum disulfide utilizing graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    CAS 

    Google Scholar
     

  • 47.

    El Abbassi, M. et al. Strong graphene-based molecular gadgets. Nat. Nanotechnol. 14, 957–961 (2019).

    CAS 

    Google Scholar
     

  • 48.

    Yang, C., Qin, A., Tang, B. Z. & Guo, X. Fabrication and features of graphene–molecule–graphene single-molecule junctions. J. Chem. Phys. 152, 120902 (2020).

    CAS 

    Google Scholar
     

  • 49.

    Ilani, S. & McEuen, P. L. Electron transport in carbon nanotubes. Annu. Rev. Condens. Matter Phys. 1, 1–25 (2010).

    CAS 

    Google Scholar
     

  • 50.

    Sfeir, M. Y. et al. Optical spectroscopy of particular person single-walled carbon nanotubes of outlined chiral construction. Science 312, 554–556 (2006).

    CAS 

    Google Scholar
     

  • 51.

    Cheng, A., Taniguchi, T., Watanabe, Okay., Kim, P. & Pillet, J. D. Guiding dirac fermions in graphene with a carbon nanotube. Phys. Rev. Lett. 123, 216804 (2019).

    CAS 

    Google Scholar
     

  • 52.

    McEuen, P., Bockrath, M., Cobden, D., Yoon, Y.-G. & Louie, S. Dysfunction, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    CAS 

    Google Scholar
     

  • 53.

    Garg, A., Rasch, D., Shimshoni, E. & Rosch, A. Giant violation of the Wiedemann–Franz Legislation in Luttinger liquids. Phys. Rev. Lett. 103, 096402 (2009).


    Google Scholar
     

  • 54.

    Kane, C. L. & Fisher, M. P. A. Thermal transport in a Luttinger liquid. Phys. Rev. Lett. 76, 3192–3195 (1996).

    CAS 

    Google Scholar
     

  • 55.

    Li, M.-R. & Orignac, E. Warmth conduction and Wiedemann–Franz regulation in disordered Luttinger liquids. Europhys. Lett. 60, 432–438 (2002).

    CAS 

    Google Scholar
     

  • 56.

    Pecker, S. et al. Commentary and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube. Nat. Phys. 9, 576–581 (2013).

    CAS 

    Google Scholar
     

  • 57.

    Shi, Z. et al. Commentary of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat. Photonics 9, 515–519 (2015).

    CAS 

    Google Scholar
     

  • 58.

    Fazio, R., Hekking, F. W. J. & Khmelnitskii, D. E. Anomalous thermal transport in quantum wires. Phys. Rev. Lett. 80, 5611–5614 (1998).

    CAS 

    Google Scholar
     

  • 59.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    CAS 

    Google Scholar
     

  • 60.

    Müller, M., Schmalian, J. & Fritz, L. Graphene: a virtually excellent fluid. Phys. Rev. Lett. 103, 025301 (2009).


    Google Scholar
     

  • 61.

    Tielrooij, Okay. J. et al. Photoexcitation cascade and a number of hot-carrier era in graphene. Nat. Phys. 9, 248–252 (2013).

    CAS 

    Google Scholar
     

  • 62.

    Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).


    Google Scholar
     

  • 63.

    Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    CAS 

    Google Scholar
     

  • 64.

    Kokkoniemi, R. et al. Bolometer working on the threshold for circuit quantum electrodynamics. Nature 586, 47–51 (2020).

    CAS 

    Google Scholar