De novo design of a nanopore for single-molecule detection that comes with a β-hairpin peptide

0
103


  • 1.

    Anfinsen, C. B. Ideas that govern folding of protein chains. Science 181, 223–230 (1973).

    CAS 

    Google Scholar
     

  • 2.

    Gutte, B. An artificial 70-amino acid residue analog of ribonuclease s-protein with enzymic exercise. J. Biol. Chem. 250, 889–904 (1975).

    CAS 

    Google Scholar
     

  • 3.

    Lear, J. D., Wasserman, Z. R. & DeGrado, W. F. Artificial amphiphilic peptide fashions for protein ion channels. Science 240, 1177–1181 (1988).

    CAS 

    Google Scholar
     

  • 4.

    Ghadiri, M. R., Granja, J. R. & Buehler, L. Ok. Synthetic transmembrane ion channels from self-assembling peptide nanotubes. Nature 369, 301–304 (1994).

    CAS 

    Google Scholar
     

  • 5.

    Kortemme, T. & Baker, D. Computational design of protein-protein interactions. Curr. Opin. Chem. Biol. 8, 91–97 (2004).

    CAS 

    Google Scholar
     

  • 6.

    Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. https://doi.org/10.1017/s0033583519000131 (2020).

  • 7.

    Bolon, D. N., Voigt, C. A. & Mayo, S. L. De novo design of biocatalysts. Curr. Opin. Chem. Biol. 6, 125–129 (2002).

    CAS 

    Google Scholar
     

  • 8.

    Beesley, J. L. & Woolfson, D. N. The de novo design of alpha-helical peptides for supramolecular self-assembly. Curr. Opin. Biotechnol. 58, 175–182 (2019).

    CAS 

    Google Scholar
     

  • 9.

    Baltzer, L., Nilsson, H. & Nilsson, J. De novo design of proteins—what are the foundations? Chem. Rev. 101, 3153–3163 (2001).

    CAS 

    Google Scholar
     

  • 10.

    Pirro, F. et al. Allosteric cooperation in a de novo-designed two-domain protein. Proc. Natl Acad. Sci. USA 117, 33246–33253 (2020).

    CAS 

    Google Scholar
     

  • 11.

    Polizzi, N. F. & DeGrado, W. F. An outlined structural unit permits de novo design of small-molecule-binding proteins. Science 369, 1227–1233 (2020).

    CAS 

    Google Scholar
     

  • 12.

    Kaiser, E. T. Design and development of biologically-active peptides and proteins, together with enzymes. Biol. Chem. Hoppe-Seyler 369, 204–204 (1988).


    Google Scholar
     

  • 13.

    Mutter, M. & Vuilleumier, S. A chemical strategy to protein design—template-assembled artificial proteins (TASP). Angew. Chem. -Int. Ed. 28, 535–554 (1989).


    Google Scholar
     

  • 14.

    Dou, J. Y. et al. De novo design of a fluorescence-activating beta-barrel. Nature 561, 485–491 (2018).

    CAS 

    Google Scholar
     

  • 15.

    Lu, P. L. et al. Correct computational design of multipass transmembrane proteins. Science 359, 1042–1046 (2018).

    CAS 

    Google Scholar
     

  • 16.

    van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing know-how. Tendencies Genet. 34, 666–681 (2018).


    Google Scholar
     

  • 17.

    Shendure, J. et al. DNA sequencing at 40: previous, current and future. Nature 550, 345–353 (2017).

    CAS 

    Google Scholar
     

  • 18.

    Mahendran, Ok. R. et al. A monodisperse transmembrane alpha-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).

    CAS 

    Google Scholar
     

  • 19.

    Krishnan, R. S. et al. Autonomously assembled artificial transmembrane peptide pore. J. Am. Chem. Soc. 141, 2949–2959 (2019).


    Google Scholar
     

  • 20.

    Ying, Y. L. & Lengthy, Y. T. Nanopore-based single-biomolecule interfaces: from info to data. J. Am. Chem. Soc. 141, 15720–15729 (2019).

    CAS 

    Google Scholar
     

  • 21.

    Varongchayakul, N., Tune, J. X., Meller, A. & Grinstaff, M. W. Single-molecule protein sensing in a nanopore: a tutorial. Chem. Soc. Rev. 47, 8512–8524 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS 

    Google Scholar
     

  • 23.

    Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of natural analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    CAS 

    Google Scholar
     

  • 24.

    Kawano, R. et al. Speedy detection of a cocaine-binding aptamer utilizing organic nanopores on a chip. J. Am. Chem. Soc.133, 8474–8477 (2011).

    CAS 

    Google Scholar
     

  • 25.

    Robertson, J. W. F. et al. Single-molecule mass spectrometry in resolution utilizing a solitary nanopore. Proc. Natl Acad. Sci. USA 104, 8207–8211 (2007).

    CAS 

    Google Scholar
     

  • 26.

    Hiratani, M. & Kawano, R. DNA logic operation with nanopore decoding to acknowledge microRNA patterns in small cell lung most cancers. Anal. Chem. 90, 8531–8537 (2018).

    CAS 

    Google Scholar
     

  • 27.

    Kawano, R. Nanopore decoding of oligonucleotides in DNA computing. Biotechnol. J. 13, 1800091 (2018).


    Google Scholar
     

  • 28.

    Liu, P. & Kawano, R. Recognition of single-point mutation utilizing a organic nanopore. Small Meth. 4, 2000101 (2020).

    CAS 

    Google Scholar
     

  • 29.

    Sutherland, T. C. et al. Construction of peptides investigated by nanopore evaluation. Nano Lett. 4, 1273–1277 (2004).

    CAS 

    Google Scholar
     

  • 30.

    Restrepo-Perez, L., Joo, C. & Dekker, C. Paving the best way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    CAS 

    Google Scholar
     

  • 31.

    Watanabe, H. et al. Evaluation of pore formation and protein translocation utilizing massive organic nanopores. Anal. Chem. 89, 11269–11277 (2017).

    CAS 

    Google Scholar
     

  • 32.

    Sohma, Y., Sasaki, M., Hayashi, Y., Kimura, T. & Kiso, Y. Novel and environment friendly synthesis of adverse sequence-containing peptides via ON intramolecular acyl migration response of O-acyl isopeptides. Chem. Commun. 2004, 124–125 (2004).


    Google Scholar
     

  • 33.

    Wimley, W. C. The versatile beta-barrel membrane protein. Curr. Opin. Struct. Biol. 13, 404–411 (2003).

    CAS 

    Google Scholar
     

  • 34.

    Chou, Ok. C. Prediction of beta-turns. J. Pept. Res. 49, 120–144 (1997).

    CAS 

    Google Scholar
     

  • 35.

    Mandel-Gutfreund, Y. & Gregoret, L. M. On the importance of alternating patterns of polar and non-polar residues in beta-strands. J. Mol. Biol. 323, 453–461 (2002).

    CAS 

    Google Scholar
     

  • 36.

    Killian, J. A. & von Heijne, G. How proteins adapt to a membrane-water interface. Tendencies Biochem. Sci. 25, 429–434 (2000).

    CAS 

    Google Scholar
     

  • 37.

    Hong, H. D., Park, S., Jimenez, R. H. F., Rinehart, D. & Tamm, L. Ok. Function of fragrant facet chains within the folding and thermodynamic stability of integral membrane proteins. J. Am. Chem. Soc. 129, 8320–8327 (2007).

    CAS 

    Google Scholar
     

  • 38.

    Cao, B. Q., Porollo, A., Adamczak, R., Jarrell, M. & Meller, J. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles. Bioinformatics 22, 303–309 (2006).

    CAS 

    Google Scholar
     

  • 39.

    Wang, Y. J. & Jardetzky, O. Likelihood-based protein secondary construction identification utilizing mixed NMR chemical-shift knowledge. Protein Sci. 11, 852–861 (2002).

    CAS 

    Google Scholar
     

  • 40.

    Kawano, R. et al. Metallic-organic cuboctahedra for artificial ion channels with a number of conductance states. Chem. 2, 393–403 (2017).

    CAS 

    Google Scholar
     

  • 41.

    Sekiya, Y. et al. Electrophysiological evaluation of membrane disruption by bombinin and its isomer utilizing the lipid bilayer system. ACS Appl. Bio Mater. 2, 1542–1548 (2019).

    CAS 

    Google Scholar
     

  • 42.

    Saigo, N., Izumi, Ok. & Kawano, R. Electrophysiological evaluation of antimicrobial peptides in various species. ACS Omega 4, 13124–13130 (2019).

    CAS 

    Google Scholar
     

  • 43.

    Sekiya, Y., Sakashita, S., Shimizu, Ok., Usui, Ok. & Kawano, R. Channel present evaluation estimates the pore-formation and the penetration of transmembrane peptides. Analyst 143, 3540–3543 (2018).

    CAS 

    Google Scholar
     

  • 44.

    Henrickson, S. E., Misakian, M., Robertson, B. & Kasianowicz, J. J. Pushed DNA transport into an uneven nanometer-scale pore. Phys. Rev. Lett. 85, 3057–3060 (2000).

    CAS 

    Google Scholar
     

  • 45.

    Huang, G., Voet, A. & Maglia, G. FraC nanopores with adjustable diameter determine the mass of opposite-charge peptides with 44 dalton decision. Nat. Commun. 10, 835 (2019).


    Google Scholar
     

  • 46.

    An, N., Fleming, A. M., Middleton, E. G. & Burrows, C. J. Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity. Proc. Natl Acad. Sci. USA 111, 14325–14331 (2014).

    CAS 

    Google Scholar
     

  • 47.

    An, N., Fleming, A. M., White, H. S. & Burrows, C. J. Nanopore detection of 8-oxoguanine within the human telomere repeat sequence. ACS Nano 9, 4296–4307 (2015).

    CAS 

    Google Scholar
     

  • 48.

    Vorobieva, A. A. et al. De novo design of transmembrane beta barrels. Science 371, 801 (2021).


    Google Scholar
     

  • 49.

    Hu, F. Z. et al. Single-molecule examine of peptides with the identical amino acid composition however completely different sequences through the use of an aerolysin nanopore. Chem. Bio. Chem. 21, 2467–2473 (2020).

    CAS 

    Google Scholar
     

  • 50.

    Kawano, R. Artificial ion channels and DNA logic gates as elements of molecular robots. Chem. Phys. Chem. 19, 359–366 (2018).

    CAS 

    Google Scholar
     

  • 51.

    Van Der Spoel, D. et al. GROMACS: quick, versatile, and free. J. Comput. Chem. 26, 1701–1718 (2005).


    Google Scholar
     

  • 52.

    Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B. & Lindahl, E. Implementation of the CHARMM pressure discipline in GROMACS: evaluation of protein stability results from correction maps, digital interplay websites, and water fashions. J. Chem. Concept Comput. 6, 459–466 (2010).

    CAS 

    Google Scholar
     

  • 53.

    Kawano, R. et al. Automated parallel recordings of topologically recognized single ion channels. Sci. Rep. 3, 1995 (2013).


    Google Scholar
     

  • 54.

    Kawano, R. et al. A transportable lipid bilayer system for environmental sensing with a transmembrane protein. PLoS ONE 9, e102427 (2014).


    Google Scholar
     

  • 55.

    Ohara, M., Takinoue, M. & Kawano, R. Nanopore logic operation with DNA to RNA transcription in a droplet system. ACS Synth. Biol. 6, 1427–1432 (2017).

    CAS 

    Google Scholar
     

  • 56.

    Serra-Batiste, M. et al. Abeta42 assembles into particular beta-barrel pore-forming oligomers in membrane-mimicking environments. Proc. Natl Acad. Sci. USA 113, 10866–10871 (2016).

    CAS 

    Google Scholar