Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies | Journal of Nanobiotechnology

0
376


  • Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA. 2020;323(19):1945–60. https://doi.org/10.1001/jama.2020.4006.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31(2):205–12. https://doi.org/10.1111/jdv.13854.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. https://doi.org/10.1136/bmj.m1590.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GBD 2019 diseases and injuries collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet (London England). 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article 

    Google Scholar
     

  • Damiani G, Bragazzi NL, Karimkhani Aksut C, Wu D, Alicandro G, McGonagle D, Guo C, Dellavalle R, Grada A, Wong P, et al. The global, regional, and national burden of psoriasis: results and insights from the global burden of disease 2019 study. Front Med (Lausanne). 2021;8:743180. https://doi.org/10.3389/fmed.2021.743180.

    Article 

    Google Scholar
     

  • Yan B-X, Chen X-Y, Ye L-R, Chen J-Q, Zheng M, Man X-Y. Cutaneous and systemic psoriasis: classifications and classification for the distinction. Front Med (Lausanne). 2021;8:649408. https://doi.org/10.3389/fmed.2021.649408.

    Article 

    Google Scholar
     

  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83. https://doi.org/10.1038/s41580-020-0230-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592–607. https://doi.org/10.1016/j.tips.2017.04.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 2015;59(3):359–71. https://doi.org/10.1016/j.molcel.2015.06.017.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell AL, Sweasy JB. Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol. 2014;49(2):116–39. https://doi.org/10.3109/10409238.2013.875514.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pukale SS, Sharma S, Dalela M, Singh AK, Mohanty S, Mittal A, Chitkara D. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in swiss albino mice. Acta Biomater. 2020;115:393–409. https://doi.org/10.1016/j.actbio.2020.08.020.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Du H, Liu P, Zhu J, Lan J, Li Y, Zhang L, Zhu J, Tao J. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl Mater Interfaces. 2019;11(46):43588–98. https://doi.org/10.1021/acsami.9b15668.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dainichi T, Kitoh A, Otsuka A, Nakajima S, Nomura T, Kaplan DH, Kabashima K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol. 2018;19(12):1286–98. https://doi.org/10.1038/s41590-018-0256-2.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight. 2020;5(20):e142067. https://doi.org/10.1172/jci.insight.142067.

    Article 
    PubMed Central 

    Google Scholar
     

  • Trouba KJ, Hamadeh HK, Amin RP, Germolec DR. Oxidative stress and its role in skin disease. Antioxid Redox Signal. 2002;4(4):665–73. https://doi.org/10.1089/15230860260220175.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Emmert H, Fonfara M, Rodriguez E, Weidinger S. NADPH oxidase inhibition rescues keratinocytes from elevated oxidative stress in a 2D atopic dermatitis and psoriasis model. Exp Dermatol. 2020;29(8):749–58. https://doi.org/10.1111/exd.14148.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan D, Afifi L, Jeon C, Trivedi M, Chang HW, Lee K, Liao W. The metabolomics of psoriatic disease. Psoriasis (Auckl). 2017;7(1):1–15. https://doi.org/10.2147/PTT.S118348.

    Article 

    Google Scholar
     

  • Hao Y, Zhu Y-J, Zou S, Zhou P, Hu Y-W, Zhao Q-X, Gu L-N, Zhang H-Z, Wang Z, Li J. Metabolic syndrome and psoriasis: mechanisms and future directions. Front Immunol. 2021;12:711060. https://doi.org/10.3389/fimmu.2021.711060.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. 2019;19(1):19–30. https://doi.org/10.1038/s41577-018-0084-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Streilein JW. Skin-associated lymphoid tissues (SALT): Origins and functions. J Invest Dermatol. 1983;80(Suppl):12s–6s. https://doi.org/10.1111/1523-1747.ep12536743.

    Article 
    PubMed 

    Google Scholar
     

  • Streilein JW. Circuits and signals of the skin-associated lymphoid tissues (SALT). J Invest Dermatol. 1985;85(1 Suppl):10 s–13 s. https://doi.org/10.1111/1523-1747.ep12275413.

    Article 

    Google Scholar
     

  • Sontheimer RD. Perivascular dendritic macrophages as immunobiological constituents of the human dermal microvascular unit. J Invest Dermatol. 1989;93(2 Suppl):96S–101S. https://doi.org/10.1111/1523-1747.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55. https://doi.org/10.1146/annurev-immunol-032713-120225.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Suárez Fariñas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94. https://doi.org/10.1084/jem.20071094.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plenkowska J, Gabig-Ciminska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xian D, Song J, Yang L, Xiong X, Lai R, Zhong J. Emerging roles of redox-mediated angiogenesis and oxidative stress in dermatoses. Oxid Med Cell Longev. 2019;2019:2304018. https://doi.org/10.1155/2019/2304018.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young CN, Koepke JI, Terlecky LJ, Borkin MS, Boyd SL, Terlecky SR. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol. 2008;128(11):2606–14. https://doi.org/10.1038/jid.2008.122.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mailloux RJ, McBride SL, Harper M-E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci. 2013;38(12):592–602. https://doi.org/10.1016/j.tibs.2013.09.001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol. 2021;21(6):363–81. https://doi.org/10.1038/s41577-020-00478-8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Boo YC. Natural Nrf2 modulators for skin protection. Antioxid (Basel). 2020;9(9):812. https://doi.org/10.3390/antiox9090812.

    CAS 
    Article 

    Google Scholar
     

  • Xu F, Xu J, Xiong X, Deng Y. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep. 2019;24(1):70–4. https://doi.org/10.1080/13510002.2019.1658377.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao J-H, Yagita H, Okumura K, Doi T, et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003;22(15):3898–909. https://doi.org/10.1093/emboj/cdg379.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy-Crispin M, Billick E, Mitsui H, Gulati N, Fujita H, Gilleaudeau P, Sullivan-Whalen M, Johnson-Huang LM, Suárez-Fariñas M, Krueger JG. Human keratinocytes’ response to injury upregulates CCL20 and other genes linking innate and adaptive immunity. J Invest Dermatol. 2012;132(1):105–13. https://doi.org/10.1038/jid.2011.262.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bernard FX, Morel F, Camus M, Pedretti N, Barrault C, Garnier J, Lecron JC. Keratinocytes under fire of proinflammatory cytokines: bona fide innate immune cells involved in the physiopathology of chronic atopic dermatitis and psoriasis. J Allergy (Cairo). 2012;2012: 718725. https://doi.org/10.1155/2012/718725

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kumari S, Bonnet MC, Ulvmar MH, Wolk K, Karagianni N, Witte E, Uthoff-Hachenberg C, Renauld J-C, Kollias G, Toftgard R, et al. Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity. 2013;39(5):899–911. https://doi.org/10.1016/j.immuni.2013.10.009.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kashiwagi M, Hosoi J, Lai JF, Brissette J, Ziegler SF, Morgan BA, Georgopoulos K. Direct control of regulatory T cells by keratinocytes. Nat Immunol. 2017;18(3):334–43. https://doi.org/10.1038/ni.3661.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 2013;34(4):174–81. https://doi.org/10.1016/j.it.2012.11.005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–91. https://doi.org/10.1038/nri2622.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HR, Kim JC, Kang SY, Kim HO, Park CW, Chung BY. Rapamycin alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced aggravated dermatitis in mice with imiquimod-induced psoriasis-like dermatitis by inducing autophagy. Int J Mol Sci. 2021;22(8):3968. https://doi.org/10.3390/ijms22083968.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodby B, Sticozzi C, Pambianchi E, Villetti G, Civelli M, Valacchi G, Facchinetti F. The PDE4 inhibitor CHF6001 affects keratinocyte proliferation via cellular redox pathways. Arch Biochem Biophys. 2020;685:108355. https://doi.org/10.1016/j.abb.2020.108355.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nadeem A, Ahmad SF, Al-Harbi NO, El-Sherbeeny AM, Al-Harbi MM, Almukhlafi TS. GPR43 activation enhances psoriasis-like inflammation through epidermal upregulation of IL-6 and dual oxidase 2 signaling in a murine model. Cell Signal. 2017;33:59–68. https://doi.org/10.1016/j.cellsig.2017.02.014.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schon MP. Adaptive and innate immunity in psoriasis and other inflammatory disorders. Front Immunol. 2019;10:1764. https://doi.org/10.3389/fimmu.2019.01764.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sano S, Chan KS, Carbajal S, Clifford J, Peavey M, Kiguchi K, Itami S, Nickoloff BJ, DiGiovanni J. STAT3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med. 2005;11(1):43–9. https://doi.org/10.1038/nm1162.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan J, Tu S. Sirt1: A potential therapeutic target in autoimmune diseases. Front Immunol. 2021;12:779177. https://doi.org/10.3389/fimmu.2021.779177.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation. 2020;43(5):1589–98. https://doi.org/10.1007/s10753-020-01242-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu A, Zhang B, Zhao W, Tu Y, Wang Q, Li J. Catalpol ameliorates psoriasis-like phenotypes via SIRT1 mediated suppression of NF-κB and MAPKs signaling pathways. Bioengineered. 2021;12(1):183–95. https://doi.org/10.1080/21655979.2020.1863015.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Huo J, Zhang D, Hu G, Zhang Y. Chemerin/ChemR23 axis triggers an inflammatory response in keratinocytes through ROS-SIRT1-NF-κB signaling. J Cell Biochem. 2019;120(4):6459–70. https://doi.org/10.1002/jcb.27936.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu A, Zhao W, Zhang B, Tu Y, Wang Q, Li J. Cimifugin ameliorates imiquimod-induced psoriasis by inhibiting oxidative stress and inflammation via NF-κB/MAPK pathway. Biosci Rep. 2020;40(6):BSR20200471. https://doi.org/10.1042/BSR20200471.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiong H, Han L, Zhang N, Chen H, Yan K, Zhang Z, Ma Y, Xu J. Glycyrrhizin improves the pathogenesis of psoriasis partially through IL-17A and the SIRT1-STAT3 axis. BMC Immunol. 2021;22(1):34. https://doi.org/10.1186/s12865-021-00421-z.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Xie S, Su Z, Song S, Xu H, Chen G, Cao W, Yin S, Gao Q, Wang H. Heme oxygenase-1 induction attenuates imiquimod-induced psoriasiform inflammation by negative regulation of STAT3 signaling. Sci Rep. 2016;6:21132. https://doi.org/10.1038/srep21132.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishitsuka Y, Ogawa T, Roop D. The KEAP1/NRF2 signaling pathway in keratinization. Antioxid (Basel). 2020;9(8):751. https://doi.org/10.3390/antiox9080751.

    CAS 
    Article 

    Google Scholar
     

  • Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen A-L, Kensler TW, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295–317. https://doi.org/10.1038/s41573-018-0008-x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sangaraju R, Alavala S, Nalban N, Jerald MK, Sistla R. Galangin ameliorates Imiquimod-Induced psoriasis-like skin inflammation in BALB/c mice via down regulating NF-κB and activation of Nrf2 signaling pathways. Int Immunopharmacol. 2021;96:107754. https://doi.org/10.1016/j.intimp.2021.107754.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang W, Yuhai, Wang H, Chasuna. Bagenna. Astilbin reduces ROS accumulation and VEGF expression through Nrf2 in psoriasis-like skin disease. Biol Res. 2019;52(1):49. https://doi.org/10.1186/s40659-019-0255-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skutnik-Radziszewska A, Maciejczyk M, Fejfer K, Krahel J, Flisiak I, Kołodziej U, Zalewska A. Salivary antioxidants and oxidative stress in psoriatic patients: can salivary total oxidant status and oxidative status index be a plaque psoriasis biomarker? Oxid Med Cell Longev. 2020;2020:9086024. https://doi.org/10.1155/2020/9086024.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melero JL, Andrades S, Arola L, Romeu A. Deciphering psoriasis. A bioinformatic approach. J Dermatol Sci. 2018;89(2):120–6. https://doi.org/10.1016/j.jdermsci.2017.11.010.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, Verkman AS. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun. 2015;6:7454. https://doi.org/10.1038/ncomms8454.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A. 2010;107(36):15681–6. https://doi.org/10.1073/pnas.1005776107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuraitis D, Rosenthal N, Boh E, McBurney E. Macrophages in dermatology: pathogenic roles and targeted therapeutics. Arch Dermatol Res. 2022;314(2):133–40. https://doi.org/10.1007/s00403-021-02207-0.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Peters T, Kess D, Sindrilaru A, Oreshkova T, Van Rooijen N, Stratis A, Renkl AC, Sunderkötter C, Wlaschek M, et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J Clin Investig. 2006;116(8):2105–14. https://doi.org/10.1172/JCI27180.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nickoloff BJ, Nestle FO. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Investig. 2004;113(12):1664–75. https://doi.org/10.1172/JCI22147.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu Z-G. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 2013;23(7):898–914. https://doi.org/10.1038/cr.2013.75.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406–17. https://doi.org/10.1016/j.immuni.2015.02.002.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu P, Peng C, Chen X, Wu L, Yin M, Li J, Qin Q, Kuang Y, Zhu W. Acitretin promotes the differentiation of myeloid-derived suppressor cells in the treatment of psoriasis. Front Med (Lausanne). 2021;8:625130. https://doi.org/10.3389/fmed.2021.625130.

    Article 

    Google Scholar
     

  • Sunkari S, Thatikonda S, Pooladanda V, Challa VS, Godugu C. Protective effects of ambroxol in psoriasis like skin inflammation: exploration of possible mechanisms. Int Immunopharmacol. 2019;71:301–12. https://doi.org/10.1016/j.intimp.2019.03.035.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhong J, Scholz T, Yau ACY, Guerard S, Hüffmeier U, Burkhardt H, Holmdahl R. Mannan-induced Nos2 in macrophages enhances IL-17-driven psoriatic arthritis by innate lymphocytes. Sci Adv. 2018;4(5):eaas9864. https://doi.org/10.1126/sciadv.aas9864.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu S-S, Calcium. ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817–33. https://doi.org/10.1152/ajpcell.00139.2004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016. https://doi.org/10.1016/j.cell.2016.08.064.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harty LC, Biniecka M, O’Sullivan J, Fox E, Mulhall K, Veale DJ, Fearon U. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann Rheum Dis. 2012;71(4):582–8. https://doi.org/10.1136/annrheumdis-2011-200245.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32. https://doi.org/10.1016/j.cell.2010.01.040.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5. https://doi.org/10.1038/nature09663.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Verma D, Fekri SZ, Sigurdardottir G, Bivik Eding C, Sandin C, Enerback C. Enhanced inflammasome activity in patients with psoriasis promotes systemic inflammation. J Invest Dermatol. 2021;141(3):586–95 e585. https://doi.org/10.1016/j.jid.2020.07.012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Müller G, Lübow C, Weindl G. Lysosomotropic beta blockers induce oxidative stress and IL23A production in langerhans cells. Autophagy. 2020;16(8):1380–95. https://doi.org/10.1080/15548627.2019.1686728.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Campbell NK, Fitzgerald HK, Malara A, Hambly R, Sweeney CM, Kirby B, Fletcher JM, Dunne A. Naturally derived heme-oxygenase 1 inducers attenuate inflammatory responses in human dendritic cells and T cells: relevance for psoriasis treatment. Sci Rep. 2018;8(1):10287. https://doi.org/10.1038/s41598-018-28488-6.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghoreschi K, Brück J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR, Respa A, Glocova I, et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med. 2011;208(11):2291–303. https://doi.org/10.1084/jem.20100977.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirino M, Kirino Y, Takeno M, Nagashima Y, Takahashi K, Kobayashi M, Murakami S, Hirasawa T, Ueda A, Aihara M, et al. Heme oxygenase 1 attenuates the development of atopic dermatitis-like lesions in mice: implications for human disease. J Allergy Clin Immunol. 2008;122(2):290–7. https://doi.org/10.1016/j.jaci.2008.05.031. 297.e1-8 .

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mitterstiller A-M, Haschka D, Dichtl S, Nairz M, Demetz E, Talasz H, Soares MP, Einwallner E, Esterbauer H, Fang FC, et al. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection. Cell Microbiol. 2016;18(10):1374–89. https://doi.org/10.1111/cmi.12578.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chau L-Y. Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci. 2015;22:22. https://doi.org/10.1186/s12929-015-0128-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, Korenfeld D, Mathyer ME, Kim H, Huang L-H, et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature. 2018;556(7702):501–4. https://doi.org/10.1038/s41586-018-0052-z.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, Zhang J, Zhang C, Tian Z. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J Hepatol. 2017;66(4):693–702. https://doi.org/10.1016/j.jhep.2016.12.018.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Feng L, Song P, Xu F, Xu L, Shao F, Guo M, Huang W, Kong L, Wu X, Xu Q. Cis-khellactone inhibited the proinflammatory macrophages via promoting autophagy to ameliorate imiquimod-induced psoriasis. J Invest Dermatol. 2019;139(9):1946-1956 e1943. https://doi.org/10.1016/j.jid.2019.02.021.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Natsuaki Y, Egawa G, Nakamizo S, Ono S, Hanakawa S, Okada T, Kusuba N, Otsuka A, Kitoh A, Honda T, et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat Immunol. 2014;15(11):1064–9. https://doi.org/10.1038/ni.2992.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191–218. https://doi.org/10.1146/annurev-cellbio-020520-111016.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53. https://doi.org/10.1038/nm.4027.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamam HJ, Khan MA, Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules. 2019;9(1):32. https://doi.org/10.3390/biom9010032.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wójcik P, Garley M, Wroński A, Jabłońska E, Skrzydlewska E. Cannabidiol modifies the formation of NETs in neutrophils of psoriatic patients. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21186795.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti- NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211. https://doi.org/10.1007/s12016-020-08804-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Uppala R, Tsoi LC, Harms PW, Wang B, Billi AC, Maverakis E, Michelle Kahlenberg J, Ward NL, Gudjonsson JE. “Autoinflammatory psoriasis”-genetics and biology of pustular psoriasis. Cell Mol Immunol. 2021;18(2):307–17. https://doi.org/10.1038/s41423-020-0519-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Haskamp S, Bruns H, Hahn M, Hoffmann M, Gregor A, Lohr S, Hahn J, Schauer C, Ringer M, Flamann C, et al. Myeloperoxidase modulates inflammation in generalized pustular psoriasis and additional rare pustular skin diseases. Am J Hum Genet. 2020;107(3):527–38. https://doi.org/10.1016/j.ajhg.2020.07.001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Rosales YA, Langereis JD, Gorris MAJ, van den Reek J, Fasse E, Netea MG, de Vries IJM, Gomez-Munoz L, van Cranenbroek B, Korber A, et al. Immunomodulatory aged neutrophils are augmented in blood and skin of psoriasis patients. J Allergy Clin Immunol. 2021;148(4):1030–40. https://doi.org/10.1016/j.jaci.2021.02.041.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bacchetti T, Simonetti O, Ricotti F, Offidani A, Ferretti G. Plasma oxidation status and antioxidant capacity in psoriatic children. Arch Dermatol Res. 2020;312(1):33–9. https://doi.org/10.1007/s00403-019-01976-z.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Baek J-O, Byamba D, Wu WH, Kim T-G, Lee M-G. Assessment of an imiquimod-induced psoriatic mouse model in relation to oxidative stress. Arch Dermatol Res. 2012;304(9):699–706. https://doi.org/10.1007/s00403-012-1272-y.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566–77. https://doi.org/10.1038/nri3477.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizuguchi S, Gotoh K, Nakashima Y, Setoyama D, Takata Y, Ohga S, Kang D. Mitochondrial reactive oxygen species are essential for the development of psoriatic inflammation. Front Immunol. 2021;12:714897. https://doi.org/10.3389/fimmu.2021.714897.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Harbi NO, Nadeem A, Ahmad SF, Bakheet SA, El-Sherbeeny AM, Ibrahim KE, Alzahrani KS, Al-Harbi MM, Mahmood HM, Alqahtani F, et al. Therapeutic treatment with Ibrutinib attenuates imiquimod-induced psoriasis-like inflammation in mice through downregulation of oxidative and inflammatory mediators in neutrophils and dendritic cells. Eur J Pharmacol. 2020;877:173088. https://doi.org/10.1016/j.ejphar.2020.173088.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim H-J, Barajas B, Chan RC-F, Nel AE. Glutathione depletion inhibits dendritic cell maturation and delayed-type hypersensitivity: implications for systemic disease and immunosenescence. J Allergy Clin Immunol. 2007;119(5):1225–33.

    CAS 
    Article 

    Google Scholar
     

  • Amico D, Spadoni T, Rovinelli M, Serafini M, D’Amico G, Campelli N, Svegliati Baroni S, Gabrielli A. Intracellular free radical production by peripheral blood T lymphocytes from patients with systemic sclerosis: role of NADPH oxidase and ERK1/2. Arthritis Res Ther. 2015;17:68. https://doi.org/10.1186/s13075-015-0591-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esmaeili B, Mansouri P, Doustimotlagh AH, Izad M. Redox imbalance and IL-17 responses in memory CD4 T cells from patients with psoriasis. Scand J Immunol. 2019;89(1):e12730. https://doi.org/10.1111/sji.12730.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lai R, Xian D, Xiong X, Yang L, Song J, Zhong J. Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep. 2018;23(1):130–5. https://doi.org/10.1080/13510002.2018.1462027.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim B-H, Oh I, Kim J-H, Jeon J-E, Jeon B, Shin J, Kim T-Y. Anti-inflammatory activity of compounds isolated from Astragalus sinicus L. in cytokine-induced keratinocytes and skin. Exp Mol Med. 2014;46:e87. https://doi.org/10.1038/emm.2013.157.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bivik Eding C, Köhler I, Verma D, Sjögren F, Bamberg C, Karsten S, Pham T, Scobie M, Helleday T, Warpman Berglund U, et al. MTH1 inhibitors for the treatment of psoriasis. J Invest Dermatol. 2021;141(8):2037–48. https://doi.org/10.1016/j.jid.2021.01.026.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang H-g, Wang T, Zheng J, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 2011;35(4):596–610. https://doi.org/10.1016/j.immuni.2011.08.001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Liu X, Liu Q, Guan Z, Luo J, Cao G, Cai R, Li Z, Xu Y, Wu Z, et al. Roles of mTORC1 and mTORC2 in controlling γδ T1 and γδ T17 differentiation and function. Cell Death Differ. 2020;27(7):2248–62. https://doi.org/10.1038/s41418-020-0500-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bielecki P, Riesenfeld SJ, Hütter J-C, Torlai Triglia E, Kowalczyk MS, Ricardo-Gonzalez RR, Lian M, Amezcua Vesely MC, Kroehling L, Xu H, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592(7852):128–32. https://doi.org/10.1038/s41586-021-03188-w.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebbo M, Crinier A, Vély F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol. 2017;17(11):665–78. https://doi.org/10.1038/nri.2017.86.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Walker JA, Barlow JL, McKenzie ANJ. Innate lymphoid cells–how did we miss them? Nat Rev Immunol. 2013;13(2):75–87. https://doi.org/10.1038/nri3349.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Te Velde A, Cheuk S, Brouwer MWD, Menting SP, Eidsmo L, et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134(9):2351–60. https://doi.org/10.1038/jid.2014.146.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44 + ILC3 in psoriasis. J Invest Dermatol. 2014;134(4):984–91. https://doi.org/10.1038/jid.2013.477.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ward NL, Umetsu DT. A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. J Invest Dermatol. 2014;134(9):2305–7. https://doi.org/10.1038/jid.2014.216.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B. Rorγt + innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J Invest Dermatol. 2012;122(6):2252–6. https://doi.org/10.1172/JCI61862.

    CAS 
    Article 

    Google Scholar
     

  • Chan T-Y, Yen C-L, Huang Y-F, Lo P-C, Nigrovic PA, Cheng C-Y, Wang W-Z, Wu S-Y, Shieh C-C. Increased ILC3s associated with higher levels of IL-1β aggravates inflammatory arthritis in mice lacking phagocytic NADPH oxidase. Eur J Immunol. 2019;49(11):2063–73. https://doi.org/10.1002/eji.201948141.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • von Bubnoff D, Andrès E, Hentges F, Bieber T, Michel T, Zimmer J. Natural killer cells in atopic and autoimmune diseases of the skin. J Allergy Clin Immunol. 2010;125(1):60–8. https://doi.org/10.1016/j.jaci.2009.11.020.

    CAS 
    Article 

    Google Scholar
     

  • Polese B, Zhang H, Thurairajah B, King IL. Innate lymphocytes in psoriasis. Front Immunol. 2020;11:242. https://doi.org/10.3389/fimmu.2020.00242.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato Y, Ogawa E, Okuyama R. Role of innate immune cells in psoriasis. Int J Mol Sci. 2020;21(18):6604. https://doi.org/10.3390/ijms21186604.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The role of natural killer cells in autoimmune diseases. Front Immunol. 2021;12:622306. https://doi.org/10.3389/fimmu.2021.622306.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilhar A, Ullmann Y, Kerner H, Assy B, Shalaginov R, Serafimovich S, Kalish RS. Psoriasis is mediated by a cutaneous defect triggered by activated immunocytes: induction of psoriasis by cells with natural killer receptors. J Invest Dermatol. 2002;119(2):384–91. https://doi.org/10.1046/j.1523-1747.2002.01812.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kono F, Honda T, Aini W, Manabe T, Haga H, Tsuruyama T. Interferon-γ/CCR5 expression in invariant natural killer T cells and CCL5 expression in capillary veins of dermal papillae correlate with development of psoriasis vulgaris. Br J Dermatol. 2014;170(5):1048–55. https://doi.org/10.1111/bjd.12812.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • López-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez S. Involvement of autophagy in NK cell development and function. Autophagy. 2017;13(3):633–6. https://doi.org/10.1080/15548627.2016.1274486.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaudenzio N, Laurent C, Valitutti S, Espinosa E. Human mast cells drive memory CD4 + T cells toward an inflammatory IL-22 + phenotype. J Allergy Clin Immunol. 2013;131(5):1400–7.e11. https://doi.org/10.1016/j.jaci.2013.01.029.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mashiko S, Bouguermouh S, Rubio M, Baba N, Bissonnette R, Sarfati M. Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J Allergy Clin Immunol. 2015;136(2):351-9.e1. https://doi.org/10.1016/j.jaci.2015.01.033.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shefler I, Pasmanik-Chor M, Kidron D, Mekori YA, Hershko AY. T cell-derived microvesicles induce mast cell production of IL-24: relevance to inflammatory skin diseases. J Allergy Clin Immunol. 2014; 133(1):217–24.e1-3. https://doi.org/10.1016/j.jaci.2013.04.035.

  • Zhang Y, Shi Y, Lin J, Li X, Yang B, Zhou J. Immune cell infiltration analysis demonstrates excessive mast cell activation in psoriasis. Front Immunol. 2021;12:773280. https://doi.org/10.3389/fimmu.2021.773280.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley CL, Shirihai OS, Theoharides TC. Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J Immunol. 2009;183(10):6313–9. https://doi.org/10.4049/jimmunol.0803422.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang B, Alysandratos K-D, Angelidou A, Asadi S, Sismanopoulos N, Delivanis D-A, Weng Z, Miniati A, Vasiadi M, Katsarou-Katsari A, et al. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J Allergy Clin Immunol. 2011;127(6):1522–31.e8. https://doi.org/10.1016/j.jaci.2011.02.005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chelombitko MA, Averina OA, Vasilyeva TV, Pletiushkina OY, Popova EN, Fedorov AV, Chernyak BV, Shishkina VS, Ilinskaya OP. Mitochondria-targeted antioxidant skq1 (10-(6´-plastoquinonyl)decyltriphenylphosphonium bromide) inhibits mast cell degranulation in vivo and in vitro. Biochem (Mosc). 2017;82(12):1493–503. https://doi.org/10.1134/S0006297917120082.

    CAS 
    Article 

    Google Scholar
     

  • Swindle EJ, Metcalfe DD. The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunol Rev. 2007;217:186–205. https://doi.org/10.1111/j.1600-065X.2007.00513.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Herrmann A-K, Wüllner V, Moos S, Graf J, Chen J, Kieseier B, Kurschus FC, Albrecht P, Vangheluwe P, Methner A. Dimethyl fumarate alters intracellular ca handling in immune cells by redox-mediated pleiotropic effects. Free Radic Biol Med. 2019;141:338–47. https://doi.org/10.1016/j.freeradbiomed.2019.07.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hoffmann JHO, Schaekel K, Hartl D, Enk AH, Hadaschik EN. Dimethyl fumarate modulates neutrophil extracellular trap formation in a glutathione- and superoxide-dependent manner. Br J Dermatol. 2018;178(1):207–14. https://doi.org/10.1111/bjd.15839.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Millar SA, Stone NL, Bellman ZD, Yates AS, England TJ, O’Sullivan SE. A systematic review of cannabidiol dosing in clinical populations. Br J Clin Pharmacol. 2019;85(9):1888–900. https://doi.org/10.1111/bcp.14038.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxid (Basel). 2019;9(1):21. https://doi.org/10.3390/antiox9010021.

    CAS 
    Article 

    Google Scholar
     

  • Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horváth B, Mukhopadhyay B, Becker L, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010;56(25):2115–25. https://doi.org/10.1016/j.jacc.2010.07.033.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakkas LI, Mavropoulos A, Zafiriou E, Roussaki-Schulze A, Bogdanos DP. The effect of apremilast on signal transduction and IL-10 production in CD39high regulatory B cells in patients with psoriatic arthritis. Mediterr J Rheumatol. 2018;29(1):59–61. https://doi.org/10.31138/mjr.29.1.59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mavropoulos A, Zafiriou E, Simopoulou T, Brotis AG, Liaskos C, Roussaki-Schulze A, Katsiari CG, Bogdanos DP, Sakkas LI. Apremilast increases IL-10-producing regulatory B cells and decreases proinflammatory T cells and innate cells in psoriatic arthritis and psoriasis. Rheumatol (Oxford). 2019;58(12):2240–50. https://doi.org/10.1093/rheumatology/kez204.

    CAS 
    Article 

    Google Scholar
     

  • Schafer PH, Parton A, Capone L, Cedzik D, Brady H, Evans JF, Man HW, Muller GW, Stirling DI, Chopra R. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal. 2014;26(9):2016–29. https://doi.org/10.1016/j.cellsig.2014.05.014.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Keating GM. Apremilast. A review in psoriasis and psoriatic arthritis. Drugs. 2017;77(4):459–72. https://doi.org/10.1007/s40265-017-0709-1.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Toda K, Tsukayama I, Nagasaki Y, Konoike Y, Tamenobu A, Ganeko N, Ito H, Kawakami Y, Takahashi Y, Miki Y, et al. Red-kerneled rice proanthocyanidin inhibits arachidonate 5-lipoxygenase and decreases psoriasis-like skin inflammation. Arch Biochem Biophys. 2020;689:108307. https://doi.org/10.1016/j.abb.2020.108307.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Patel RV, Clark LN, Lebwohl M, Weinberg JM. Treatments for psoriasis and the risk of malignancy. J Am Acad Dermatol. 2009;60(6):1001–17. https://doi.org/10.1016/j.jaad.2008.12.031.

    Article 
    PubMed 

    Google Scholar
     

  • Blaner WS, Shmarakov IO, Traber MG. Vitamin A and vitamin E: will the real antioxidant please stand up? Annu Rev Nutr. 2021;41:105–31. https://doi.org/10.1146/annurev-nutr-082018-124228.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397(10275):754–66. https://doi.org/10.1016/s0140-6736(21)00184-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tiwari N, Osorio Blanco E, Sonzogni A, Esporrin-Ubieto D, Wang H, Calderon M. Nanocarriers for skin applications: where do we stand? Angew Chem Int Ed Engl. 2021;61(3):e202107960. https://doi.org/10.1002/anie.202107960.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Huizen AM, Menting SP, Gyulai R, Iversen L, van der Kraaij GE, Middelkamp-Hup MA, Warren RB, Spuls PI, Schejtman AA, Egeberg A, et al. International edelphi study to reach consensus on the methotrexate dosing regimen in patients with psoriasis. JAMA Dermatol. 2022;158(5):561–72. https://doi.org/10.1001/jamadermatol.2022.0434.

    Article 
    PubMed 

    Google Scholar
     

  • Wollina U, Tirant M, Vojvodic A, Lotti T. Treatment of psoriasis: novel approaches to topical delivery. Open Access Maced J Med Sci. 2019;7(18):3018–25. https://doi.org/10.3889/oamjms.2019.414.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dadwal A, Mishra N, Narang RK. Novel topical nanocarriers for treatment of psoriasis: an overview. Curr Pharm Des. 2018;24(33):3934–50. https://doi.org/10.2174/1381612824666181102151507.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8. https://doi.org/10.1038/nbt.1504.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2018;18(1):19–40. https://doi.org/10.1038/nrd.2018.183.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee YJ, Bae JH, Kang S-G, Cho SW, Chun D-I, Nam SM, Kim CH, Nam HS, Lee SH, Lee SH, et al. Pro-oxidant status and Nrf2 levels in psoriasis vulgaris skin tissues and dimethyl fumarate-treated HaCaT cells. Arch Pharmacal Res. 2017;40(9):1105–16. https://doi.org/10.1007/s12272-017-0955-5.

    CAS 
    Article 

    Google Scholar
     

  • Gesser B, Rasmussen MK, Iversen L. Dimethyl fumarate targets MSK1, RSK1, 2 and IKKα/β Kinases and regulates NF-κB /p65 activation in psoriasis: a demonstration of the effect on peripheral blood mononuclear cells, drawn from two patients with severe psoriasis before and after treatment with dimethyl fumarate. Psoriasis (Auckl). 2020;10:1–11. https://doi.org/10.2147/PTT.S234151.

    CAS 
    Article 

    Google Scholar
     

  • Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360(6387):449–53. https://doi.org/10.1126/science.aan4665.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landeck L, Asadullah K, Amasuno A, Pau-Charles I, Mrowietz U. Dimethyl fumarate (DMF) vs. monoethyl fumarate (MEF) salts for the treatment of plaque psoriasis: a review of clinical data. Arch Dermatol Res. 2018;310(6):475–83. https://doi.org/10.1007/s00403-018-1825-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin CY, Hsu CY, Elzoghby AO, Alalaiwe A, Hwang TL, Fang JY. Oleic acid as the active agent and lipid matrix in cilomilast-loaded nanocarriers to assist PDE4 inhibition of activated neutrophils for mitigating psoriasis-like lesions. Acta Biomater. 2019;90:350–61. https://doi.org/10.1016/j.actbio.2019.04.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tripathi P, Kumar A, Jain PK, Patel JR. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int J Biol Macromol. 2018;120(Pt A):1322–34. https://doi.org/10.1016/j.ijbiomac.2018.08.136.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim JY, Ahn J, Kim J, Choi M, Jeon H, Choe K, Lee DY, Kim P, Jon S. Nanoparticle-assisted transcutaneous delivery of a signal transducer and activator of transcription 3-inhibiting peptide ameliorates psoriasis-like skin inflammation. ACS Nano. 2018;12(7):6904–16. https://doi.org/10.1021/acsnano.8b02330.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu H, Kang RS, Bagnowski K, Yu JM, Radecki S, Daniel WL, Anderson BR, Nallagatla S, Schook A, Agarwal R, et al. Targeting the IL-17 receptor using liposomal spherical nucleic acids as topical therapy for psoriasis. J Invest Dermatol. 2020;140(2):435–44 e434. https://doi.org/10.1016/j.jid.2019.06.146.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wu K, Wu X, Guo J, Jiao Y, Zhou C. Facile polyphenol-europium assembly enabled functional poly(l-lactic acid) nanofiber mats with enhanced antioxidation and angiogenesis for accelerated wound healing. Adv Healthc Mater. 2021;10(19):e2100793. https://doi.org/10.1002/adhm.202100793.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33(5):1607–17. https://doi.org/10.1016/j.biomaterials.2011.11.011.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yan Y, Liang H, Liu X, Liu L, Chen Y. Topical cationic hairy particles targeting cell free DNA in dermis enhance treatment of psoriasis. Biomaterials. 2021;276:121027. https://doi.org/10.1016/j.biomaterials.2021.121027.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ozcan A, Sahin D, Impellizzieri D, Nguyen TT, Hafner J, Yawalkar N, Kurzbach D, Tan G, Akdis CA, Nilsson J, et al. Nanoparticle-coupled topical methotrexate can normalize immune responses and induce tissue remodeling in psoriasis. J Invest Dermatol. 2020;140(5):1003–14 e1008. https://doi.org/10.1016/j.jid.2019.09.018.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Han R, Ho LWC, Bai Q, Chan CKW, Lee LKC, Choi PC-L, Choi CHJ. Alkyl-terminated gold nanoparticles as a self-therapeutic treatment for psoriasis. Nano Lett. 2021;21(20):8723–33. https://doi.org/10.1021/acs.nanolett.1c02899.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Keum H, Kim TW, Kim Y, Seo C, Son Y, Kim J, Kim D, Jung W, Whang C-H, Jon S. Bilirubin nanomedicine alleviates psoriatic skin inflammation by reducing oxidative stress and suppressing pathogenic signaling. J Control Release. 2020;325:359–69. https://doi.org/10.1016/j.jconrel.2020.07.015.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee Y, Kim H, Kang S, Lee J, Park J, Jon S. Bilirubin nanoparticles as a nanomedicine for anti-inflammation therapy. Angew Chem Int Ed. 2016;55(26):7460–3. https://doi.org/10.1002/anie.201602525.

    CAS 
    Article 

    Google Scholar
     

  • Sun H, Zhao Y, Zhang P, Zhai S, Li W, Cui J. Transcutaneous delivery of mung bean-derived nanoparticles for amelioration of psoriasis-like skin inflammation. Nanoscale. 2022;14(8):3040–8. https://doi.org/10.1039/d1nr08229a.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lopes Rocha Correa V, Assis Martins J, Ribeiro de Souza T, de Castro Nunes Rincon G, Pacheco Miguel M, Borges de Menezes L. Correa Amaral A. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int J Biol Macromol. 2020;162:1465–75. https://doi.org/10.1016/j.ijbiomac.2020.08.027.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c04206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan X, Fang WW, Xue J, Sun TC, Dong L, Zha Z, Qian H, Song YH, Zhang M, Gong X, et al. Thermoresponsive in situ forming hydrogel with sol-gel irreversibility for effective methicillin-resistant staphylococcus aureus infected wound healing. ACS Nano. 2019;13(9):10074–84. https://doi.org/10.1021/acsnano.9b02845.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gan D, Xing W, Jiang L, Fang J, Zhao C, Ren F, Fang L, Wang K, Lu X. Plant-inspired adhesive and tough hydrogel based on ag-lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun. 2019;10(1):1487. https://doi.org/10.1038/s41467-019-09351-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batheja P, Sheihet L, Kohn J, Singer AJ, Michniak-Kohn B. Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J Control Release. 2011;149(2):159–67. https://doi.org/10.1016/j.jconrel.2010.10.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wan T, Pan Q, Ping Y. Microneedle-assisted genome editing: a transdermal strategy of targeting by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv. 2021;7(11):eabe2888. https://doi.org/10.1126/sciadv.abe2888.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev. 2018;127:106–18. https://doi.org/10.1016/j.addr.2018.01.015.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, Quan G, Wu C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021;121:119–33. https://doi.org/10.1016/j.actbio.2020.12.004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT, Barnhart TE, Ferreira CA, Wang Y, Yao H, Sun T, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv Mater. 2019;31(40):e1902956. https://doi.org/10.1002/adma.201902956.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, Sun M, Yang P, Jiang S, Ying X, et al. Ros-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020;10(5):2342–57. https://doi.org/10.7150/thno.40395.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng Q, Sun H, Fang C, Xia F, Liao H, Lee J, Wang J, Xie A, Ren J, Guo X, et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat Commun. 2021;12(1):1436. https://doi.org/10.1038/s41467-021-21714-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng F, Wu Y, Li X, Ge X, Guo Q, Lou X, Cao Z, Hu B, Long NJ, Mao Y, et al. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia. Angew Chem Int Ed Engl. 2018;57(20):5808–12. https://doi.org/10.1002/anie.201802309.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kwon HJ, Cha M-Y, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano. 2016;10(2):2860–70. https://doi.org/10.1021/acsnano.5b08045.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim J, Kim HY, Song SY, Go SH, Sohn HS, Baik S, Soh M, Kim K, Kim D, Kim HC, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano. 2019;13(3):3206–17. https://doi.org/10.1021/acsnano.8b08785.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, Soh M, Hyeon T. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in parkinson’s disease. Angew Chem Int Ed Engl. 2018;57(30):9408–12. https://doi.org/10.1002/anie.201805052.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wu L, Liu G, Wang W, Liu R, Liao L, Cheng N, Li W, Zhang W, Ding D. Cyclodextrin-modified ceo2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis. Int J Nanomedicine. 2020;15:2515–27. https://doi.org/10.2147/IJN.S246783.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Chen L, Xu X, Fan Y, Xue X, Shen M, Shi X. Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform. Small. 2020;16(49):e2005661. https://doi.org/10.1002/smll.202005661.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang D-Y, Tu T, Younis MR, Zhu KS, Liu H, Lei S, Qu J, Lin J, Huang P. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics. 2021;11(20):9904–17. https://doi.org/10.7150/thno.66518.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moyano DF, Liu Y, Ayaz F, Hou S, Puangploy P, Duncan B, Osborne BA, Rotello VM. Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated and murine model systems. Chem. 2016;1(2):320–7. https://doi.org/10.1016/j.chempr.2016.07.007.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemati H, Ghahramani M-H, Faridi-Majidi R, Izadi B, Bahrami G, Madani S-H, Tavoosidana G. Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis. J Control Release. 2017;268:259–68. https://doi.org/10.1016/j.jconrel.2017.10.034.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ninan N, Goswami N, Vasilev K. The impact of engineered silver nanomaterials on the immune system. Nanomaterials (Basel). 2020;10(5):967. https://doi.org/10.3390/nano10050967.

    CAS 
    Article 

    Google Scholar
     

  • Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, Zhou W. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials. 2021;264:120390. https://doi.org/10.1016/j.biomaterials.2020.120390.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Guan M, Ren R, Gao C, Cheng H, Li Y, Gao B, Wei Y, Fu J, Sun J, et al. Improved immunoregulation of ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes via M2 macrophage polarization by regulating GLUT1 and autophagy. Int J Nanomedicine. 2020;15:2011–26. https://doi.org/10.2147/IJN.S242919.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao K, Roome T, Aziz S, Razzak A, Abbas G, Imran M, Jabri T, Gul J, Hussain M, Sikandar B, et al. Bergenin loaded gum xanthan stabilized silver nanoparticles suppress synovial inflammation through modulation of the immune response and oxidative stress in adjuvant induced arthritic rats. J Mater Chem B. 2018;6(27):4486–501. https://doi.org/10.1039/c8tb00672e.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, Loh HS, Lim YP, Lee CF, Bhattamishra SK, et al. Silver nanoparticles: advanced and promising technology in diabetic wound therapy. Mater Sci Eng C Mater Biol Appl. 2020;112:110925. https://doi.org/10.1016/j.msec.2020.110925.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Crisan D, Scharffetter-Kochanek K, Crisan M, Schatz S, Hainzl A, Olenic L, Filip A, Schneider LA, Sindrilaru A. Topical silver and gold nanoparticles complexed with cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-κB activity. Exp Dermatol. 2018;27(10):1166–9. https://doi.org/10.1111/exd.13707.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xu J, Chen H, Chu Z, Li Z, Chen B, Sun J, Lai W, Ma Y, He Y, Qian H, et al. A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis. J Nanobiotechnol. 2022;20(1):155. https://doi.org/10.1186/s12951-022-01368-y.

    CAS 
    Article 

    Google Scholar
     

  • Qindeel M, Khan D, Ahmed N, Khan S, Asim Ur R. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano. 2020;14(4):4662–81. https://doi.org/10.1021/acsnano.0c00364.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, Vo LT, Tobin VR, Goodman D, Shifrut E, et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol. 2020;38(1):44–9. https://doi.org/10.1038/s41587-019-0325-6.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901. https://doi.org/10.1038/s41551-017-0137-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng B, Liang H, Li Y, Dong C, Shen J, Mao HQ, Leong KW, Chen Y, Liu L. Tuned cationic dendronized polymer: molecular scavenger for rheumatoid arthritis treatment. Angew Chem Int Ed Engl. 2019;58(13):4254–8. https://doi.org/10.1002/anie.201813362.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liang H, Peng B, Dong C, Liu L, Mao J, Wei S, Wang X, Xu H, Shen J, Mao H-Q, et al. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat Commun. 2018;9(1):4291. https://doi.org/10.1038/s41467-018-06603-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coimbra S, Catarino C, Costa E, Oliveira H, Figueiredo A, Rocha-Pereira P, Santos-Silva A. Circulating cell-free DNA levels in portuguese patients with psoriasis vulgaris according to severity and therapy. Br J Dermatol. 2014;170(4):939–42. https://doi.org/10.1111/bjd.12738.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mondelo-Macía P, Castro-Santos P, Castillo-García A, Muinelo-Romay L, Diaz-Peña R. Circulating free DNA and its emerging role in autoimmune diseases. J Pers Med. 2021;11(2):151. https://doi.org/10.3390/jpm11020151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang H, Yan Y, Wu J, Ge X, Wei L, Liu L, Chen Y. Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Sci Adv. 2020;6(31):eabb5274. https://doi.org/10.1126/sciadv.abb5274.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ragothaman M, Kannan Villalan A, Dhanasekaran A, Palanisamy T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater Sci Eng C Mater Biol Appl. 2021;128:112328. https://doi.org/10.1016/j.msec.2021.112328.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean A-M. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules. 2020;10(9):1211. https://doi.org/10.3390/biom10091211.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Slominski A, Fischer TW, Zmijewski MA, Wortsman J, Semak I, Zbytek B, Slominski RM, Tobin DJ. On the role of melatonin in skin physiology and pathology. Endocrine. 2005;27(2):137–48. https://doi.org/10.1385/ENDO:27:2:137.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scuderi SA, Cucinotta L, Filippone A, Lanza M, Campolo M, Paterniti I, Esposito E. Effect of melatonin on psoriatic phenotype in human reconstructed skin model. Biomedicines. 2022;10(4):752. https://doi.org/10.3390/biomedicines10040752.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slominski AT, Zmijewski MA, Semak I, Kim T-K, Janjetovic Z, Slominski RM, Zmijewski JW. Melatonin, mitochondria, and the skin. Cell Mol Life Sci. 2017;74(21):3913–25. https://doi.org/10.1007/s00018-017-2617-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo C, Lu L, Liu D, Wei K. Development of erianin-loaded dendritic mesoporous silica nanospheres with pro-apoptotic effects and enhanced topical delivery. J Nanobiotechnol. 2020;18(1):55. https://doi.org/10.1186/s12951-020-00608-3.

    CAS 
    Article 

    Google Scholar
     

  • Damiani G, Pacifico A, Linder DM, Pigatto PDM, Conic R, Grada A, Bragazzi NL. Nanodermatology-based solutions for psoriasis: state-of-the art and future prospects. Dermatol Ther. 2019;32(6):e13113. https://doi.org/10.1111/dth.13113.

    Article 
    PubMed 

    Google Scholar
     

  • Khezri K, Saeedi M, Maleki Dizaj S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed Pharmacother. 2018;106:1499–505. https://doi.org/10.1016/j.biopha.2018.07.084.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kang N-W, Kim M-H, Sohn S-Y, Kim K-T, Park J-H, Lee S-Y, Lee J-Y, Kim D-D. Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials. 2018;182:245–58. https://doi.org/10.1016/j.biomaterials.2018.08.030.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yu F, Zhang Y, Yang C, Li F, Qiu B, Ding W. Enhanced transdermal efficiency of curcumin-loaded peptide-modified liposomes for highly effective antipsoriatic therapy. J Mater Chem B. 2021;9(24):4846–56. https://doi.org/10.1039/d1tb00557j.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Suzuki IL, de Araujo MM, Bagnato VS, Bentley MVLB. TNFα siRNA delivery by nanoparticles and photochemical internalization for psoriasis topical therapy. J Control Release. 2021;338:316–29. https://doi.org/10.1016/j.jconrel.2021.08.039.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Xia Q, Li Y, He Z, Li Z, Guo T, Wu Z, Feng N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: a new strategy for clustering drug in inflammatory skin. Theranostics. 2019;9(1):48–64. https://doi.org/10.7150/thno.29715.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34. https://doi.org/10.1002/adma.201104763.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mora-Raimundo P, Lozano D, Benito M, Mulero F, Manzano M, Vallet-Regí M. Osteoporosis remission and new bone formation with mesoporous silica nanoparticles. Adv Sci. 2021;8(16):e2101107. https://doi.org/10.1002/advs.202101107.

    CAS 
    Article 

    Google Scholar
     

  • Pham LM, Kim E-C, Ou W, Phung CD, Nguyen TT, Pham TT, Poudel K, Gautam M, Nguyen HT, Jeong J-H, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677. https://doi.org/10.1016/j.biomaterials.2021.120677.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mai Y, Ouyang Y, Yu M, Qin Y, Girardi M, Saltzman WM, Cocco E, Zhao C, Yu L, Jia Y, et al. Topical formulation based on disease-specific nanoparticles for single-dose cure of psoriasis. J Control Release. 2022;349:354–66. https://doi.org/10.1016/j.jconrel.2022.07.006.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4:33. https://doi.org/10.1038/s41392-019-0068-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shravanth SH, Osmani RAM, Anupama LJS, Rahamathulla VP, Gangadharappa M. HV. Microneedles-based drug delivery for the treatment of psoriasis. J Drug Deliv Sci Technol. 2021;64:102668. https://doi.org/10.1016/j.jddst.2021.102668.

    CAS 
    Article 

    Google Scholar
     

  • Jing Q, Ruan H, Li J, Wang Z, Pei L, Hu H, He Z, Wu T, Ruan S, Guo T, et al. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials. 2021;278:121142. https://doi.org/10.1016/j.biomaterials.2021.121142.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater. 2021;33(39):e2100176. https://doi.org/10.1002/adma.202100176.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials. 2013;34(27):6377–87. https://doi.org/10.1016/j.biomaterials.2013.05.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sun L, Liu Z, Wang L, Cun D, Tong HHY, Yan R, Chen X, Wang R, Zheng Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded plga nanoparticles in hydrogel. J Control Release. 2017;254:44–54. https://doi.org/10.1016/j.jconrel.2017.03.385.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rana K, Pani T, Jha SK, Mehta D, Yadav P, Jain D, Pradhan MK, Mishra S, Kar R. G BR et al. Hydrogel-mediated topical delivery of steroids can effectively alleviate psoriasis attenuating the autoimmune responses. Nanoscale. 2022;14(10):3834–48. https://doi.org/10.1039/d1nr06001e.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Qiu F, Xi L, Chen S, Zhao Y, Wang Z, Zheng Y. Celastrol niosome hydrogel has anti-inflammatory effect on skin keratinocytes and circulation without systemic drug exposure in psoriasis mice. Int J Nanomedicine. 2021;16:6171–82. https://doi.org/10.2147/IJN.S323208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar